Guidelines for Rescue Services

Mercedes-Benz Buses and Coaches · Edition Date 2018
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Publisher's information</td>
<td>4</td>
</tr>
<tr>
<td>1.1</td>
<td>Questions and suggestions</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Legal notices</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Copyright</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Products</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Trademarks</td>
<td>5</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Liability and warranty</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Foreword</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Tips for rescue teams</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Medical aspects</td>
<td>7</td>
</tr>
<tr>
<td>3.2</td>
<td>Technical aspects</td>
<td>8</td>
</tr>
<tr>
<td>3.3</td>
<td>Tactical operational aspects</td>
<td>8</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Operational procedure</td>
<td>9</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Fire protection</td>
<td>10</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Multiple casualty incident</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Technical information</td>
<td>11</td>
</tr>
<tr>
<td>4.1</td>
<td>Diesel drive</td>
<td>11</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Tank location</td>
<td>11</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Tank - material/capacity</td>
<td>12</td>
</tr>
<tr>
<td>4.2</td>
<td>Natural gas drive</td>
<td>13</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Technology</td>
<td>13</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Materials</td>
<td>14</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Gas supply isolation</td>
<td>15</td>
</tr>
<tr>
<td>4.3</td>
<td>Fuel cell drive</td>
<td>16</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Technology</td>
<td>16</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Safety devices</td>
<td>17</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Power supply isolation</td>
<td>18</td>
</tr>
<tr>
<td>4.5</td>
<td>The all-electric eCitaro (rigid and articulated)</td>
<td>20</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Engineering</td>
<td>20</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Safety features</td>
<td>21</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Materials</td>
<td>22</td>
</tr>
<tr>
<td>4.5.4</td>
<td>De-energising the bus</td>
<td>24</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Further information for emergency rescue services</td>
<td>28</td>
</tr>
<tr>
<td>4.6</td>
<td>Vehicle body</td>
<td>20</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Body frame</td>
<td>30</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Materials</td>
<td>31</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Articulation joint</td>
<td>32</td>
</tr>
<tr>
<td>4.6.6</td>
<td>Dimensions / weight</td>
<td>32</td>
</tr>
<tr>
<td>4.7</td>
<td>Materials used</td>
<td>33</td>
</tr>
</tbody>
</table>
Technical Rescue

5.1 Fire detection / fire extinguisher system ... 34
5.2 Battery ... 35
 5.2.1 Disconnecting the battery ... 36
5.3 Switching off the engine ... 38
 5.3.1 Removing the key .. 38
 5.3.2 Start/Stop switch at driver station ... 38
 5.3.3 Start/Stop switch in the engine compartment 38
 5.3.4 Battery circuit breaker ... 39
 5.3.5 Main isolating switch .. 39
 5.3.6 Covering the air intake .. 40
 5.3.7 Interrupting the fuel supply .. 41
 5.3.8 Opening the engine compartment flap ... 41
5.4 Securing and support .. 42
 5.4.1 Support .. 42
 5.4.2 Wheel chocks ... 42
 5.4.3 Supporting struts .. 42
 5.4.4 Endless slings .. 43
 5.4.5 Lifting the vehicle ... 44
 5.4.6 Lifting / lowering system and kneeling ... 46
5.5 Entering the vehicle .. 47
 5.5.1 Vehicle doors .. 48
 5.5.2 Opening vehicle doors from outside ... 49
 5.5.3 Opening door from inside ... 52
 5.5.4 Driver door ... 53
 5.5.5 Opening emergency exits (Roof hatches)) 54
 5.5.6 Removing vehicle windows ... 56
 5.5.7 Cutting open the folding bellows ... 57
5.6 Driver station ... 58
 5.6.1 Cab door .. 58
 5.6.2 Driver seat adjustment ... 59
 5.6.3 Steering column .. 60
5.7 Passenger compartment ... 61
 5.7.1 Passenger restraint systems ... 61
 5.7.2 Adjustment of passenger seats ... 61
 5.7.3 Attachment of passenger seats / removal of passenger seats 62
 5.7.4 Handrails and partition walls .. 64
 5.7.5 Luggage racks .. 64
5.8 Special areas ... 65
 5.8.1 Toilet cabin ... 65
 5.8.2 Galley ... 66
 5.8.3 Luggage compartment ... 66
 5.8.4 Driver rest area ... 67
 5.8.5 Ski boxes .. 68
Publisher's information

1 Publisher's information

EvoBus GmbH
Mercedes-Benz-Straße 127 / 6
70327 Stuttgart

1.1 Questions and suggestions
If you have any questions, suggestions or proposals on this rescue guide, please feel free to contact us.

www.mercedes-benz.de
1.2 Legal notices

1.2.1 Copyright
Copyright 2015 - 2018 EvoBus GmbH. All rights reserved. The text, images and graphics are all subject to copyright and other intellectual property protection. These objects may not be copied for commercial use or distribution, nor may these objects be modified or used.

1.2.2 Products
The information is subject to change following the editorial deadline. The information in this description is to be regarded as an indication. Errors excepted. Colours may vary for technical reasons. This description may also contain models and consulting services that are not available in some countries.

1.2.3 Trademarks
Unless otherwise indicated, all marks displayed in this product description are subject to the trademark rights of EvoBus GmbH and/or Daimler AG, its model nameplates, and its corporate logos and emblems.

1.2.4 Liability and warranty
EvoBus GmbH provides this information without guarantee or warranty of any kind, express or implicit. This shall also exclude any implied warranties of merchantability, fitness for any particular purpose or non-infringement of laws and patents. While the information provided is believed to be accurate, it may include errors or inaccuracies, for which we shall not assume any liability.
Dear readers,

One of the main goals of EvoBus GmbH and the Mercedes-Benz Buses and Coaches brand has always been to guarantee the best possible safety. This also includes making available information about our vehicles and their safety technology for rescue teams.

Despite intensive efforts to make our buses as safe as possible, the possibility of injury cannot be completely ruled out in the event of an emergency.

A short, fast and effective rescue chain will therefore continue to be unavoidable in the future. The rescue teams must get access as quickly as possible to the injured without increasing the danger for the casualties or themselves.

The prerequisite for this is the sound training of all rescue personnel. In view of the special circumstances for buses, e.g. construction, special access arrangements and safety systems, this guide will assist you in your work both during operations and in the training of rescue teams.

This guide has been written in the light of the latest knowledge and with the help of personnel from the rescue services, but makes no claim to completeness and is in no way a substitute for sound training and the relevant specialist literature on the topic of "Technical Rescue".

The guide is intended to provide support for rescue teams during operations and training. Since every accident, especially with buses, is an exceptional situation, the information in this guide must be adapted to each individual case.

EvoBus GmbH · 68301 Mannheim
3 Tips for rescue teams

The rescue of persons from cars involved in accidents has in recent times become standard practice for rescue teams. This operation can be practised without any problem using discarded cars.

However, for buses and coaches the situation looks different. Owing to the long service life and the high residual value, it is almost impossible for rescue teams to exercise the rescue of injured persons from current vehicle models.

In comparison to motor car accidents, the patient-orientated rescue of persons from buses and coaches is much more costly not only because of the high number of injured. The more stable construction together with the significantly greater dimensions and weights of the vehicles make the rescue of trapped persons more difficult and complicated.

3.1 Medical aspects

Whereas up to a few years ago the fastest release of accident victims stood in the foreground, today it is medical initial emergency care and patient-orientated rescue from the vehicle that is appropriate to the patient.

Exception

- Immediate danger due to fire or crash
- Crash rescue necessary on medical grounds

In every case the (hectic) pulling out of persons must be avoided at all costs. The accident victim should first be left in the vehicle as long as there is no immediate danger for the person and rescuers.

The top priorities are the medical and psychological care of the accident victim, together with a careful, patient-orientated rescue from the vehicle.

The medical action taken in the vehicle should be limited to what is absolutely essential. At the same time access to the accident victim for the emergency doctor or rescue service must be facilitated to allow the life-saving measures to be carried out.

The vital immediate measures must be carried out without delay in accordance with the relevant current medical standard.
Tips for rescue teams

The most important immediate measures are:
- Assure the vital functions (breathing, circulation)
- Keep the airways free, and clear any breathing obstructions (possibly by intubation)
- Prevent shock or assess the state of shock and take stabilisation measures
- Take care of life-threatening injuries
- Stop serious bleeding
- Immobilise certain parts of the body
- Psychological care of the accident victim

In an accident very high accelerations act on the body, so there is a high risk of spinal injury. The accident victims must always be immobilised before taking any rescue measures; i.e. taken care of using the appropriate bracing procedures (e.g. "Stifneck", Kendrick Extraction Device (KED) etc.).

During the rescue operations the accident victim must be given constant medical care. It is essential to ensure a careful course of action.

3.2 Technical aspects

- Identification of the vehicle model
- Visual check on the installed restraint and safety systems
- Body features in relation to the use of hydraulic rescue equipment

3.3 Tactical operational aspects

During the rescue action there are numerous risks of injury for the patients and rescuers, e.g. due to
- running engines
- explosion of high pressure gas tanks and lines
- electronic equipment and defective electrical lines
- hot water equipment
- coolant leaks
- air conditioners
- acid leaks
- sharp edges, metal parts, shards of glass etc.

Always pay attention to the personal safety of the rescuers.
3.3.1 Operational procedure

The aim of the patient-orientated rescue is to ensure wherever possible the gapless care of patients from the accident scene until the time of definitive care in hospital.

The rescue of accident victims from buses may be divided into different phases, in the same way as for passenger cars:

1. Initial opening
2. Care opening
3. Release opening

Through the parallel execution of medical and technical measures it is possible to optimise the time for a patient-orientated rescue.

During this time it is essential to have constant communication between the fire service and the rescue team.

An initial assessment, and the external securing of the vehicles involved in the accident or of the accident site always come at the start of the operation.

Initial assessment

- Number of vehicles involved
- Number of injured and trapped persons
- Special technical features of the vehicles
- Possibilities for access and release
- Special hazards

Making the outside safe

- Make the accident site safe against flowing traffic
- Ensure fire protection by making ready suitable extinguishing agents
- Secure luggage, ski boxes, trailers etc.
- Illumination of the accident site

Give immediate feedback to your command post.

Ask for additional support in good time; do not forget the support required for medical care, such as the leading emergency physician, medical coordination officer, rapid response groups etc.).

For tactical operational reasons (vehicle height) it is advisable to call up elevating rescue vehicles at an early stage: e.g. turntable ladder with basket and stretcher support.

Note section 3.3.3 Multiple casualty incident.
Tips for rescue teams

3.3.2 Fire protection

The time between fire outbreak and conflagration is only a few minutes. Therefore it is essential to provide fourfold fire protection for classes A, B C, and D.

A fire risk exists during rescue work primarily due to
- escaping service fluids
- short circuit
- defective heaters

3.3.3 Multiple casualty incident

Owing to the possibility of a high number of casualties in bus accidents, in addition to the "Technical Rescue" team, there will usually be a need to set up a "Multiple casualty incident" team.

This requires additional rules regarding the operations logistics chain, the organisation of space, and the operations command system.

The following points must be given special treatment, particularly when the site of operations is confused and constricted:

- coning off the accident scene over a wide area, setting up road blocks
- alternative approach and exit routes for reinforcements
- requesting additional support
- staging areas for fire service, rescue service, disaster response teams, police etc.
- preparation areas for fire and rescue service, ambulance service, disaster prevention, police etc.
- casualty holding and treatment areas
4 Technical information

In the bus industry too development has not stood still. So beside the conventional petrol or diesel engine there are more and more buses with alternative drives coming into use. Gas and fuel cell drives are no longer a rarity.

In addition, with regard to the body and the materials used, there are some special features compared with the construction of a passenger car. For example, we must assume that the dimensions will be significantly greater and the weight higher. Similarly, the articulated vehicle is also something special which rescuers should give thought to in good time.

4.1 Diesel drive

Propulsion using petrol or diesel is the oldest and the most widespread. This is probably where the fewest questions are raised about ensuring fire protection. Yet even here there are some things to note that are not so relevant for operations involving crashed passenger cars.

4.1.1 Tank location

The tanks may be integrated into the front passenger seats, and so place special demands on the rescuers. However, the tanks on coaches also demand a cautious approach when using rescue equipment because of their location in the area of luggage compartments (beneath the passenger seats).

The precise location of the tank can be found in Section 7 – Annex.

During rescue operations make absolutely certain you also know the location of the lines from the tank to the engine.
Technical information

4.1.2 Tank – material/capacity

<table>
<thead>
<tr>
<th>Material</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>plastic</td>
<td>180 litres (city bus) up to 1,000 litres (coach)</td>
</tr>
<tr>
<td>steel sheet</td>
<td></td>
</tr>
<tr>
<td>aluminium</td>
<td></td>
</tr>
</tbody>
</table>

Diesel is assigned to **Fire class B** according to the European Standard EN2 for "Inflammable materials of diverse nature".
4.2 Natural gas drive

The Citaro CNG and Citaro G CNG models are low-floor city buses of the Mercedes-Benz Citaro type with natural gas drive.

Well-known on the diesel buses, the engine has been further developed for natural gas combustion and converted to work as a spark ignition engine.

Buses with natural gas drive may exhibit the following distinguishing features:
- "CNG" (Compressed Natural Gas) marking on the engine flap
- filler neck in the engine flap
- large roof bonnet

4.2.1 Technology

The installation of the natural gas components of the Citaro CNG is aimed at the highest level of safety.

The tanks are designed for pressures of over 500 bar and so provide a bursting safety factor of 2.5. On every pressure tank special safety devices, such as shut-off valves or fusible cut-outs ensure maximum safety standards.

For additional safety the gas tanks are located on the vehicle roof.

The gas line of the natural gas Citaro runs from the tank filler neck in the engine compartment directly to the pressure gas tanks on the roof without touching the passenger compartment. This prevents natural gas from entering the interior of the vehicle.
4.2.2 Materials

Roof gas bonnet: fibre-glass reinforced plastic. Air slits are located on the top of the gas cover; these allow any leaking gas to escape. The 20 mm wide gap between the gas cover and the roof of the bus in conjunction with the air slits satisfies the statutory requirement to permit an exchange of air.

Gas tanks: solid plastic polyethylene with carbon fibres. The tanks are fixed in a heavy-duty steel frame on the roof framework.

- Natural gas is assigned to Fire class C according to the European Standard EN2 for "Inflammable materials of diverse nature". Natural gas is lighter than air and disperses upwards on escaping.

- Extensive tests have shown that the solid tanks, pipes, unions and the complete natural gas peripherals offer the greatest possible safety in an accident. The risk of a fire on a Mercedes-Benz bus driven by natural gas is no higher than for diesel vehicles.
4.2.3 Gas supply isolation

The refuelling unit is accessible via the
- rear engine flap
- tank flap above the front axle.

Located here on some models is a main shut-off valve by means of which the gas supply to the tanks can be isolated.

On vehicles of later design the gas supply is automatically isolated by means of an electric shutoff valve on "Ignition OFF".

The gas tanks are provided with a safety device on both sides.

On one side there is a valve unit, consisting of:
- manual shut-off valve (corner valve)
- fusible link (110°C)
- pipe fracture safeguard (cross-section reduction to 10%)

On the other side there is:
- plug with integrated bursting disc
- fusible links

All safety devices are mechanical systems. Their operation requires no vehicle electrical supply.
Technical information

4.3 Fuel cell drive

Up to now around 40 Mercedes-Benz fuel cell buses have been delivered worldwide. In a number of different studies the operation of the vehicles as well as the required infrastructure is being tested.

As emission standards get ever stricter and fossil energy sources become increasingly scarce, the demand for this alternative drive concept can be expected to rise.

4.3.1 Technology

Fuel cells produce energy from the reaction of hydrogen and oxygen. They work with a high efficiency and emit only pure water vapour.

The fuel cell system and the pressure tanks, containing hydrogen compressed to 350 bar, are accommodated on the roof of the buses.

Electricity is produced from the hydrogen and delivered to the 200 kW electric motor.

The electric motor and the automatic transmission are located at the rear of the buses.

Vehicles with a fuel cell drive are equipped with hydrogen tanks. For these vehicles it is particularly important to observe the guidelines for extinguishing gas fires.

Hydrogen (H₂) is assigned to Fire class C according to the European Standard EN2 for "Inflammable materials of diverse nature".
Technical information

1. 9 hydrogen pressure tanks with a maximum capacity of 1,900 litres (at 350 bar and 15°C)
2. Fuel cell supply unit
3. Two fuel cell stacks, which convert hydrogen into electricity
4. Two fans for cooling the fuel cell stacks
5. Bus air-conditioner for the passenger compartment
6. Refuelling for hydrogen
7. Central electric drive motor
8. Automatic transmission

4.3.2 Safety devices

The pressure tanks are provided with fusible links.

If the temperature at the pressure tanks is excessive (e.g., fire) the hydrogen will be blown down by means of a fusible link at a central position on the bus roof.

(1) Main blow down point on right side of vehicle

The safety devices are mechanical systems. Their operation requires no vehicle electrical supply.
Technical information

4.3.3 Power supply isolation

The bus is equipped with fuel cell stacks, in which electrical energy is generated by the reaction of hydrogen and oxygen. The danger zones for high voltages and currents are on the vehicle roof and at the rear left of the engine compartment.

There are several ways of removing power from the bus:

- Battery circuit breaker above the driver station

- Battery circuit breaker behind the front end flap

- Battery isolating switch in the battery compartment

When power is removed from the bus, all electrical circuits are interrupted.

In the fuel cell stacks on the vehicle roof, the voltage is only slowly reduced (capacitor effect).

At the same time all hydrogen valves are closed and a further outflow of hydrogen into the lines is prevented. The deliberate discharge from the main blow down point above the tanks is therefore not affected.
1 Battery circuit breaker above the driver station
2 Battery circuit breaker behind the front end flap
3 Battery isolating switch in the battery compartment
4 Fuel cell stacks with "capacitor effect"
The Mercedes-Benz eCitaro with all-electric drive produces zero local emissions, near-zero noise emissions and raises the standard for electric mobility in the city bus segment to a new level.

With this city bus, Mercedes-Benz is tackling the increasing scarcity of fossil fuels and stricter emission regulations.

4.5 The all-electric eCitaro (rigid and articulated)

The drive concept is fundamentally based on an electric portal axle with electric motors at the wheel hubs. The peak output of the motors amounts to 2 x 125 kW, with a total torque of 2 x 485 Nm. Thanks to system design, this is fully available from a standing start and ensures appreciable dynamic performance even with maximum occupancy.

Lithium-ion batteries with a total capacity of almost 243 kWh supply the power. These are integrated into a maximum of ten modules. In addition to two battery modules on the vehicle roof, four modules in the rear end also form part of the standard specification. Depending on the customer's specification, there may then be a further two or four battery modules on the roof.

The energy consumption of an all-electric city bus is heavily influenced by the amount of power required to cool and, above all, to heat the large interior. For this reason, thermal management is one of the prominent features of the Citaro: extraordinary energy performance provides the basis for the practical range that the Citaro can achieve.

To save energy, the passenger compartment of the Citaro is heated by a heat pump. This is supplemented by the customary sidewall heaters with blowers and the front heater. All components that give off heat are interconnected in order to reduce the amount of energy required to cool them to a minimum. In the cold periods of the year, the roof-mounted air-conditioning system also acts as a heat pump. The use of CO2 refrigerant delivers further benefits, making an impressive contribution to the particularly efficient operation of the heat pump, even at very low temperatures.

Another plus: even while the batteries are charging in the depot, the interior can be preconditioned to the desired temperature or even overconditioned. In this way, the bus can start its route already heated or cooled.

Risk of fatal injury.

The on-board power supply has a voltage of up to 750 V/500 A. If not de-energised, the high-voltage system presents a lethal danger to rescue personnel during emergency rescues.
4.5.2 Safety features

The vehicle has protection against accidental contact in conformity with ECE R 100 and is equipped with the relevant IP protection ratings and the IT unearthed system network type.

The safety features are mechanical systems. No vehicle electrical power is necessary for their operation.
4.5.3 Materials

All lines that carry a high voltage greater than 60 volts DC or 30 VAC are coloured orange or sheathed in an orange-coloured corrugated hose.

The components and lines of the high-voltage system (750 V) are located:

- on the vehicle roof (high-voltage lines on the left-hand side of the vehicle),
- in the engine compartment (engine tower and rear end) and
- on the rear axle and centre axle.

The high-voltage components are identified by the warning sign for electricity:
Technical information
Technical information

4.5.4 De-energising the bus

The vehicle must be de-energised by the following measures:

1. Turn the ignition key to position 0 or

2. Operate the emergency-off switch to the left of the driver’s station or

3. Operate the emergency-off switch at the charging port flap.

Attention:
Some other energy sources could still be active.
- Pull out the charging connector
- Retract the pantograph
Technical information

Risk of fatal injury.

<table>
<thead>
<tr>
<th>With all 3 variants, an active rapid discharge of the high-voltage system takes place within 5 seconds.</th>
<th>Proceed with appropriate caution during this time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the event of rapid discharge disruption, the high-voltage system is discharged passively. This process lasts up to 6 minutes. After this time, the vehicle is safely de-energised.</td>
<td>ATTENTION: The batteries still contain voltage!!!</td>
</tr>
<tr>
<td>If the use of extinguishing media (DIN VDE 0132) is required, always maintain the appropriate safety distance.</td>
<td></td>
</tr>
</tbody>
</table>

Position of emergency-off switches

- **1** Emergency-off switch in the driver’s station, to the left of the seat
- **2** Emergency-off switch in the charging port flap
- **3** Emergency-off switch on the charging device, if connected
Technical information

Mobile chargers / charging posts
Operate the emergency-off switch
Disconnect the supply voltage

On-board power supply (24 V)
To isolate the on-board battery, it is advisable to use the battery isolating switch in the battery compartment.

With the high-voltage system activated, operating the battery isolating switch continues to have no effect.
4.5.5 Further information for emergency rescue services

Definitions:
Low voltage is the term used to describe AC voltages up to 1,000 volts and DC voltages up to 1,500 volts.

A high-voltage system or high-voltage bus (HV) is, in the specific context of automotive engineering, a term for systems that operate on AC voltages in the range 30 V to 1 kV or DC voltages in the range 60 V to 1.5 kV.

Protective measures for malfunctioning installations:
If a vehicle equipped with a high-voltage system has experienced an unexpected failure or defect, e.g. as a consequence of a traffic accident or fire, it should be assumed that electrical hazards now exist.

Damaged high-voltage systems must be safeguarded by physical barriers to keep live system parts inaccessible to passers-by.

First course of action for responders:
- In so far as this is possible, the vehicle must be de-energised immediately by means of the emergency-off switch on the flap of the charging socket or in the driver's station.
- A safety distance of at least one metre must be maintained from damaged high-voltage systems or their parts.

Li-ion batteries are inherently flammable due to their material composition. The same applies, however, to other energy stores, e.g. fuel tanks. Additional measures implemented in the design of the battery housing and the installation location of the batteries are contributing to further improvements in the safety of high-voltage batteries. These safety measures mean that there is not likely to be any increased fire risk by comparison with conventional vehicles. The Li-ion battery unit and its individual cells have mechanical safety devices. These are triggered in the event of a (e.g. fire-related) temperature or pressure increase inside the battery to assist purposeful degassing and the necessary pressure relief. In this way, the possibility of a Li-ion battery exploding can practically be eliminated.

Any contact with escaping battery fluid must be avoided because this could be an irritant or corrosive, depending on the battery type. The inhalation of electrolyte fumes must absolutely be avoided. Electrolyte can be soaked up with the use of any conventional binding agent. The possibility of the Li-ion battery also catching fire at a later time cannot be ruled out if the Li-ion battery has suffered mechanical damage as a result of an accident. For this reason, the condition of all Li-ion batteries must be assessed by a trained specialist and the Li-ion batteries should subsequently be stored correctly and under observation. This applies both to the accident-damaged or burned-out vehicle as a whole and to a Li-ion battery that has been isolated from the vehicle.

Vehicle fire

As with conventional vehicles, a fire involving hybrid and electric vehicles can produce harmful fumes, depending on the materials that are burning, e.g. plastic. Emergency rescue services must wear the usual personal protective equipment.
Technical information

During fire fighting, hazards could be present as a consequence of:

- live system parts,
- whirling up of parts, e.g. exploding voltage converters,
- toxic decomposition products of particular plastics,
- formation of hydrogen or oxyhydrogen gas due to a possible electrolytic reaction with the fire-extinguishing water.

Use of extinguishing media:

Water is suitable as an extinguishing medium outdoors, provided the necessary safety distances are maintained. A great amount of water should be used, where possible. A continuous supply of extinguishing water helps to cool the Li-ion battery to such an extent that the fire no longer spreads and a controlled burn-out of the Li-ion battery can take place.

Class D dry powder, CO2 and sand are suitable only under certain conditions due to their difficulty of deployment.

Extinguishing foam and powder are not suitable as they have conductive properties.

Extinguisher safety distances:

Spray: at least 1 m
Jet: at least 5 m

These safety distances are derived from DIN VDE 0132 Table 5 and refer to standardised size C jet-spray branch pipes with nozzle attached and a delivery pressure of 5 bar. For higher pressures or high delivery rates, especially with the use of size B branch pipes or fire monitors, different distances will need to be ascertained and these are generally greater.

Recovery from water

In the recovery of submerged or partly submerged vehicles equipped with a high-voltage system, the same procedure applies as for conventional vehicles. A high-voltage system immersed in water should not, in principle, pose an increased risk of electric shock. After the vehicle has been recovered from the water, the high-voltage system should be deactivated in accordance with the prescribed shutdown procedure.

During recovery from water, therefore, there is generally no increased risk of electric shock by comparison with recovery on land.
4.6 Vehicle body

Knowledge of the construction of the vehicle involved in an accident will facilitate the rescue action enormously. On this will depend how effectively the technical options and the available tools are used. This in turn is the basis for a rapid, careful, and successful rescue of trapped persons.

4.6.1 Body frame

The frame construction may place high demands on the performance of the hydraulic rescue equipment!

The body frame is of tubular construction.
- Semi-integral structure with all-round ribs joined together by continuous angle sections at the roof edges and seams.
- Pillars, bows and side members of large square steel tube.
- The sidewalls of city buses have a reinforced longitudinal member which provides protection against side impacts and a mount for the seat.

Figure 5: Body frame (low-floor bus shown here)
Technical information

4.6.2 Materials

Body frame material
- Square steel tube

Floor frame material

<table>
<thead>
<tr>
<th>Longitudinal and cross members</th>
<th>Large-volume square tubes or folded and pressed parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junctions at the cross members (in front of and behind the rear axle)</td>
<td>Cast-steel nodes</td>
</tr>
<tr>
<td>Wheel housing area</td>
<td>Galvanised sheet steel or aluminium</td>
</tr>
<tr>
<td></td>
<td>- 3 mm at front axle</td>
</tr>
<tr>
<td></td>
<td>- 2 mm at rear axle</td>
</tr>
</tbody>
</table>

Panelling material
- Strip-galvanised sheet steel or aluminium, thickness approx. 1.0 mm
- FRP mouldings
- Aluminium sheet

The panelling is bonded, spot welded or riveted to the body frame.

The sidewalls and the roof are lined throughout with insulating mats or Polystyrol.
4.6.3 Articulation joint

The front and rear sections of the vehicle are connected by means of an articulated system. It consists of support units, a self-supporting turntable and a hydraulic unit.

This articulation joint is especially robust due to the design of the cast parts (grey cast iron with spheroidal graphite, GGG).

The folding bellows and power supply routing are located in the articulation area.

To allow buckling movements of the bus, the front and rear sections of the joint are connected with a roller bearing. The pitch axis is at the junction between the front section of the vehicle and the joint.

⚠️ Risk of injury!

When lifting articulated buses there is a considerable risk of injury. In particular, with a distorted articulated joint unforeseen movements can occur.

Proceed with extreme care. Pay attention to the personal safety of the rescuers.

4.6.4 Dimensions / weight

Mercedes-Benz buses and coaches are built in lengths between 8 m (midibus) and 18 m (articulated vehicle).

Depending on the length and axle equipment, a permissible gross vehicle weight from 12,600 kg to 28,000 kg is achieved.
4.7 Materials used

Only fire retardant materials are used in the interior of the bus in compliance with the legal requirements (EU and ECE) and the current state-of-the-art. The requirements of EU Directive 95/28 and 2001/85 EC for the entire vehicle are deemed to have been met.

4.7.1 Magnesium and Aluminium

In the motor industry, light metals such as magnesium and aluminium are being used more and more. These metal parts find use in the vehicle as engine blocks, cylinder head covers, intake manifolds, transmission or clutch housings, dashboard brackets, seat backrest frames, and door and flap structures in conjunction with other materials and components of vehicle bodies.

Magnesium and aluminium are assigned to **Fire class D** according to the European Standard EN2 for "Inflammable materials of diverse nature".

Danger of injury!

<table>
<thead>
<tr>
<th>Danger of injury!</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium and aluminium components burn with a bright flame.</td>
<td>Avoid directly looking into the flames.</td>
</tr>
<tr>
<td>Magnesium and aluminium reach temperatures of 2000 – 3000°C in a fire.</td>
<td>Use appropriate extinguishing agents for metal fires.</td>
</tr>
<tr>
<td>During combustion at very high temperatures a part of the water molecules are split. When this happens hydrogen and oxygen are released. The mixture of these two gases is the explosive oxyhydrogen gas.</td>
<td>Use appropriate extinguishing agents for fighting fires of Fire Class D. Have a further hose ready for any fires in the vicinity.</td>
</tr>
</tbody>
</table>

There is no increased danger for bus passengers through the use of magnesium and aluminium.
5 Technical Rescue

Every instance of technical assistance, in particular the release of trapped or injured persons requires knowledge of the construction of the bus involved in the accident.

In this section you will find information about the equipment of various Mercedes-Benz buses and coaches. However, since there are numerous items of special equipment for every model, the configuration of individual buses may vary widely.

Whenever possible, ask the driver about the precise equipment and operation of the vehicle.

5.1 Fire detection / fire extinguisher system

For Mercedes-Benz buses and coaches a fire detection / fire extinguisher system in the engine compartment is available as an extra.

Detection lines monitor the temperature in the engine room. If the set value (160 °C) is exceeded an alarm appears on the driver display with the text: "Fire in engine compartment".

The extinguishing operation is triggered in the same way. Atomised to a fine spray, the extinguishing agent discharges into the engine compartment from the extinguishing nozzles.

Risk of injury!

Under certain circumstances the fire extinguisher system may not be able to completely and permanently extinguish the fire.

Even if the fire appears to be out ensure fire protection is in place.

The fire detection lines installed in the engine compartment are at a pressure of about 15 bar. The extinguishing agent lines are at a pressure of 200 bar.

Wear the appropriate protective equipment.

1 – Detection line
2 - Nozzle 1
2 - Nozzle 2
4 - Nozzle 3
5 - Nozzle 4
5.2 Battery

In most buses there are two or more batteries. The batteries may be located in front of, above or behind the axles.

The exact position of the batteries in the individual models may be obtained from section 7 - Annex.

The battery position is not indicated on the outside of the vehicle.

The batteries are mounted on removable trays.

1. Open the locking screws / split pins of the battery supporting frame.
2. Pull out the tray by the carrying handles.
3. If the batteries are arranged one above the other loosen the locking screws/ split pins of the upper frame.
4. Swing the upper battery to the right.
5.2.1 **Disconnecting the battery**

i Do not disconnect the batteries until you have made use of all electrical loads for your own benefit – e.g. driver window lifter, door openers, roof hatches, driver seat adjustment, interior lighting etc. This can considerably simplify the further course of the operation and the rescue of casualties.

i After disconnection of the batteries the interior lighting will no longer function. Avoid panicking passengers by floodlighting the vehicle.

Risk of injury!

<table>
<thead>
<tr>
<th>When working on batteries there may be a risk of injury and explosion.</th>
<th>Observe the safety warnings on the battery, in the user instructions and in the vehicle operating manual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside enclosed battery compartments an oxyhydrogen mixture may build up. On disconnecting the battery there may a risk of explosion.</td>
<td>Always pull the battery tray right out. Wear the appropriate protective equipment.</td>
</tr>
<tr>
<td>On some vehicles disconnecting the battery can cause the driver seat to lower. Any uncontrolled movement may lead to the risk of further injury or to a worsening in the condition of the casualty.</td>
<td>Carry out this operation only in consultation with the emergency doctor.</td>
</tr>
</tbody>
</table>

Instead of disconnecting the battery it is recommended that you use the battery circuit breaker.
Technical Rescue

Disconnecting the battery
1. Switch off the ignition.
2. Disconnect the negative terminal.
3. Disconnect the positive terminal.
4. Hold the positive and negative cables together to discharge voltages stored across capacitors.
5. Check that circuits are dead by, for example, switching on the hazard warning flasher.
6. Protect the cables against being re-energised or making contact by, for example, using cable ties.

After disconnecting the batteries also make sure that fire protection is in place.
5.3 Switching off the engine

In the case of diesel engines the engine may continue running after an accident. After securing the vehicle it must be switched off.

The engine may be switched off in various ways.

5.3.1 Removing the key

The ignition lock is located on the right of the steering column. Before you remove the key, the following criteria must be met:

- accelerator not depressed
- parking brake on
- pushbutton switch "N" of transmission operated

5.3.2 Start/Stop switch at driver station

Some buses are equipped with a Start/Stop switch. This is found either:

- on the console to the left of the driver station or
- on the instrument panel.

5.3.3 Start/Stop switch in the engine compartment

Besides the ignition lock and the Start/Stop switch near the driver, there may also be an additional Start/Stop switch (1) in the engine compartment.

To stop the engine with this switch, the following conditions must be met:

- ignition lock in drive position
- operation of the Stop switch
5.3.4 **Battery circuit breaker**

Operating the battery circuit breaker will interrupt the current supply to the injection system. After 2–3 injection operations the engine will stop.

![Battery circuit breaker](image)

Note that, after disconnecting the batteries, all electrical loads, such as window lifters, door openers, roof hatches, seat adjustment, interior lighting etc. will cease to work.

5.3.5 **Main isolating switch**

Some models have a main isolating switch fitted. It is located on the console to the left of the driver and is coloured red.

Operating the main isolating switch will switch off the engine. Speedometer, instrument cluster, central locking, interior lighting and roof hatches will still function.

1. Unlock the switch by turning the red knob to the left
2. Operate the switch by pressing the red knob.
5.3.6 Covering the air intake

A further way, which has proved itself in practice, is to cover the air intake with a plastic foil. Due to the reduced oxygen supply, a vacuum builds up and the engine stops.

The engine air intake (1) is located at the rear on the right or left side of the vehicle.

Figure 9: City bus

Figure 10: City bus

Figure 11: Coach

Figure 12: Coach
5.3.7 Interrupting the fuel supply

In order to switch off the engine, you may, if necessary, interrupt the fuel supply at the fuel filter in the engine compartment.
- Close the hand wheel (1) at the fuel filter or
- Unscrew the fuel filter.

5.3.8 Opening the engine compartment flap

Open the engine compartment flap (3) by the two handle recesses (4).

The engine compartment flap is normally not secured with a lock.
Technical Rescue

5.4 Securing and support

Risk of injury!

Rescue action can bring about unintentional movement of the vehicle. This can lead to further injury to the accident victims and put the rescuers at risk. Before beginning rescue work secure the vehicle against uncontrolled movements.

A patient-orientated rescue of injured persons from the vehicle can only be done after adequate stabilisation of the vehicle. Persons who are trapped are in direct contact with the vehicle. For this reason it is necessary to make sure that the action of securing the vehicle does not cause uncontrolled movements of the vehicle or parts thereof. The secureness of the vehicle must be maintained during the entire rescue operation, and must not hinder the use of rescue equipment by the fire service.

The stabilisation of buses that are standing or on their side is relative easy. Here the vehicle can be secured against tipping and sliding with chocks, supporting struts, ropes and belts. A bus that is unstable or lying on its roof requires extensive supporting materials and even perhaps the use of a mobile crane.

5.4.1 Support

The vehicle can be stabilised using wooden pads, blocks or planks.

5.4.2 Wheel chocks

Wheel chocks can be used to stop the bus rolling away.

5.4.3 Supporting struts

Buses on their side can be secured against tipping and sliding using supporting struts or special support systems.
5.4.4 Endless slings

If the vehicle is on sloping or uneven terrain, such as a road embankment, the vehicle can be secured using an endless sling in conjunction with a mobile crane, depending on the situation.

Because of the heavy weight of a bus it is essential to observe the safe working load of straps.

Suitable slinging points are:

- Coupling jaw at the front located behind the flap in the centre section of the bumper.

- Coupling jaw at the rear located behind a flap in the centre section of the bumper below the number plate.

- Drive axle
- Air suspension bellows
5.4.5 Lifting the vehicle

<table>
<thead>
<tr>
<th>Risk of injury!</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifting the vehicle, if not done properly, represents a high risk of injury for patients and rescuers.</td>
<td>Lifting of the entire vehicle must always be done at all the axles. The vehicle is not stable enough between the axles underneath the side wall (U-section) for it to be lifted or supported there.</td>
</tr>
<tr>
<td>Lifting the vehicle can lead to unforeseen movements or even failure of lifting appliances.</td>
<td>Place supports under vehicles being lifted in the course of the operation with materials suitable for the purpose. Work only on vehicles that are supported or secured.</td>
</tr>
</tbody>
</table>

The lift contact points for the jack on the bodyshell are marked on the outside of the bus by symbols. These points are also suitable as contact points for the lifting appliances of the fire service.

Caution with tandem axles:
Drive axle and trailing axle are interconnected through the suspension design. Lifting a single axle is only allowed so long as the wheels of the second axle do not lift off the ground.
Technical Rescue

If the vehicle is lying on the roof or on the side then the reinforced vertical struts by the doors and on the opposite side of the vehicle act as slinging points for straps and endless slings, or as lifting points for lifting supports and lifting cushions.

Risk of injury!

| When lifting a bus with a mobile crane there is a considerable risk of injury. | Always use the lifting points indicated as the slinging points for lifting the bus. |
| Keep sufficient support material ready. |
| Do not pull the sling through two opposite windows and lift the bus by the roof. The roofs are not designed for holding a bus. |

| If a bus is not lifted properly it can flip over onto the other side. | Make sure there is an adequate stabilising / counterbalancing force to prevent the bus flipping over. |

| If the bus is turned on its roof or the sling runs over the roof, then there will be considerable deformation of the roof, which will reduce the room above the seats. | Carry out this action only with the greatest consideration for the persons inside the vehicle. |
Technical Rescue

5.4.6 Lifting / lowering system and kneeling

Some Mercedes-Benz buses are equipped with air-sprung lifting / lowering system.

The rotary knob for the lifting / lowering system is located on the left of the driver seat on the floor of the vehicle.

Turn the switch to the right from the central position to lift the vehicle.
Turn the switch to the left to lower the vehicle.
The vehicle will be lifted or lowered by 70 mm respectively.

Using this function it may be possible to free persons trapped under the vehicle.
The lifting function works only when the engine is running and the electrical system is in working order.
5.5 Entering the vehicle

There are various ways of gaining entry into the vehicle.

First of all you should check whether access via the doors is possible. Whenever possible do this without undue use of rescue equipment.

Further ways of entering are presented by removal of the bus windows, access via roof hatches, or the folding bellows of the articulated joint (initial opening).

Finally, an existing opening may be enlarged using rescue equipment for the rescue opening. However this should be only be used as an absolute last resort because an incalculable risk exists due to hidden service lines etc.

Because the usable space of a bus can be optimised in different ways there are very many different equipment and usage variants e.g. library bus, conference bus, blood donor bus etc.

In this guide we shall deal exclusively with the equipment of buses and coaches for passenger transport.
5.5.1 Vehicle doors

The vehicle doors fitted to Mercedes-Benz buses may be divided into three systems:

- Inward folding doors
- Outward swinging doors
- Plug-in sliding doors
5.5.2 Opening vehicle doors from outside

First of all try to open the doors normally by pneumatic or electrical means. If that not work, use the emergency valves near the door in accordance with the instructions.

Only then should you attempt to open the doors by mechanical means or to remove them.

Often the doors can be opened without any technical aids.

Buttons

On city and interurban buses you may be able to open the doors with the "Door open" button on the outside of the door.

Door opening button in front section

On city buses behind a flap in the front section there is a pressure switch for opening Door 1.

Note: On many vehicles this button is located in the tank flap.

On coaches the button is either
- on the door leaf (Door 1) or
Technical Rescue

- in the front section under the right wiper arm

Emergency valve outside
On buses built in 2005 or earlier an emergency valve is fitted on the outside of every door.

Figure 14: Outside emergency valve – example for city bus

The emergency valves on the outside of the vehicle also function after disconnecting the vehicle electrical system.
Technical Rescue

A – Drive position
B – Emergency position

1. If necessary, remove the seal from the emergency valve.
2. Open the emergency valve cover.
3. Turn the emergency valve from the drive position (A) to the emergency position (B).
4. The door system is vented and is now unpressurised. The door leaves can be opened by hand.

Forcing open by hand
On some buses it is possible to force open the doors by hand against the pneumatic system. Owing to the closing pressure still present, the doors must subsequently be secured against reclosing by means of wedges or similar means.

Opening with spreaders
If the doors cannot be opened in the normal way, then a hydraulic appliance would be a suitable tool to use.
1. Place the spreader between the door rubbers.
2. Open the door.
3. Secure the door so that it cannot shut again.
5.5.3 Opening door from inside

Door switch
Open the doors via the switch on the instrument panel at the driver station if you have access to the vehicle interior and power has not yet been removed from the vehicle.

Figure 15: Switch at driver station – city bus

Figure 16: Switch (10) at driver station – coach

Emergency valve inside
An emergency valve is fitted inside every door.

Open the doors in the same way as in the section “Opening vehicle doors from outside” – “Opening doors in an emergency”.

1 – Emergency valve
2 – Emergency valve cover

Figure 17: Inside emergency valve – example for city bus

The emergency valves inside the vehicle work even if the power supply fails.
Technical Rescue

Square drive key or hand wheel

EU Directive 2001/85/EC requires that it be possible to open doors from the inside (means of escape), even if the door has been closed mechanically from the outside. The doors can always be opened from inside using the hand wheel (3).

To open the doors, turn the lock (1) with a square drive key (2) or the hand wheel (3) in the direction of the arrow.

![Figure 18: Hand wheel – example for city bus](image)

In some cases it may be necessary to remove the doors completely in order to rescue persons. If necessary, remove the handrails in the entry area.

For this purpose, if at all possible do not use parting grinders or flame cutting gear but hydraulic rescue equipment. Otherwise there will be a risk of fire due to the flame retardant materials used in the interior.

5.5.4 Driver door

Some vehicles are equipped with a driver door. This enables access directly to the driver station.

The door is provided with a simple, lockable handle.

![Driver door](image)
5.5.5 Opening emergency exits (Roof hatches)

The roof hatches can be pushed out and are designed as an emergency exit. They can be opened manually from inside and outside. The clear escape exit size is 505 x 807 mm (the law requires 500 x 700 mm).

Opening from outside

1. Pull on the red handle.
 The roof hatch opens.

Opening from inside

Many buses are fitted with a suspended ceiling. For this reason you first have to remove the inner panel of the roof hatch to open it.

City bus

1. Push in the safety foil (1).
 Under the safety foil you will see a handle.

2. Remove the ceiling panel (2) with the handle (3).
 The safety bolt (4) and the roof hatch (5) are now accessible and can be operated.
3. Pull the safety bolt (4) downwards.
 The roof hatch (5) is released and can be opened.

4. Press the roof hatch (5) upwards.
 The emergency exit opens.

Coach

1. Remove the panel (1) by pulling the handle (2) (Velcro strip).

2. Turn the inner rotary handle (1) in the direction of the arrow (clockwise).
 The lid (2) of the emergency exit can now be laid down.
 The lid is secured by a check strap.
5.5.6 Removing vehicle windows

In general the front window is made of laminated safety glass: the door, side windows and rear window are of single-pane safety glass. The windows are bonded to the frame.

Laminated safety glass

Remove the front window or parts of it using a glass saw.

Risk of injury!

| The weight of the front window of laminated safety glass can be as much as 120 kg! |
| When removing the front window, make sure it cannot fall down, for example by dividing it into "easy to carry" pieces. |
| This means an increased risk of injury when removing the window. |
| Before starting work, cover patients with a protective cover. |
| Sawing windows produces a fine glass dust that must not be allowed to get into wounds or airways. |
| Wear a face mask. |
| Keep the number of cuts to a minimum. |

Single-pane safety glass

1. Mask off the windows of single-pane safety glass with foil.
2. Shatter the window with the spring-loaded punch.
3. Remove the window from the frame.

Risk of injury!

| The waist rail height, particularly in the case of coaches, may be up to 2 m above the ground. |
| Ensure sufficient scaffolding for rescuing casualties. |
| There may be two panes of safety glass as double glazing (heat-absorbing glazing) with space and foil in between. |
5.5.7 Cutting open the folding bellows

On articulated buses it is possible to gain entry into the vehicle by cutting into the folding bellows in the area of the articulation joint.

1 – Low-floor articulation joint
2 - Potentiometer control
3 - Platform
4 – Folding bellows
5 – Centre frame
6 – Suspension section
7 – Floor covering
8 – Cable harness
9 – Centre frame stabilisation
10 – Power supply routing system
11 – Roof lining
12 - Accessories

Risk of injury!

In both the lower and the upper half of the folding bellows are located the service ducts. In these areas service lines are routed from the front to the rear sections of the bus.

Do not cut up the folding bellows in the area of the service ducts.
5.6 Driver station

Driver stations in buses and coaches are complex separate areas, which require a precise knowledge and the application of special rescue techniques.

Figure 20: Driver station – city bus

Figure 21: Driver station - coach

Risk of injury!

Adjusting the seat or steering wheel, or removing the steering wheel can cause a decompression syndrome of the trapped person, which can lead to a shock.

The release should only be done in consultation with the emergency doctor. When adjusting the seat or steering wheel make sure that no further danger to the trapped person or the rescuers can occur due to moving parts.

In Mercedes-Benz buses and coaches there are no airbags or belt tensioners installed.

5.6.1 Cab door

The driver cab door is normally hinged at the front. It is equipped with an inside handle for opening the door.

Material:
- steel frame
- FRP
- trim components made from foam-backed plastic film
5.6.2 Driver seat adjustment

On Mercedes-Benz buses a wide variety of different driver seats is offered. The operation of the seat adjustment may vary depending on the seat manufacturer.

Air-sprung swivel seats are installed as standard.

Some models have the following equipment, which must be taken into consideration or can be made use of when rescuing a trapped driver:
- fore-and-aft adjustment (1)
- integrated pneumatic system with lumbar support
- pneumatic side contour adjustment
- recliner adjustment
- cushion depth adjustment
- tilt adjustment
- horizontal adjustment
- swivel seat

Figure 22: Driver’s seat Grammer Tourea (MSG 90.5 PG)

The handle for the fore-and-aft adjustment of the seat works without power and has the same location for all seat manufacturers.
- Pull the handle upwards and slide the seat.

The other seat adjustment options mostly work only if the power supply is intact.

If the controls are no longer in working order, cut through the air line in accordance with the manufacturer’s instructions.
Cut open the seat bellows and wedge the seat to protect the patient from unintentional movements of the seat.
5.6.3 **Steering column**

The steering column is installed with a means for
- height adjustment and
- tilt adjustment

The adjustment of the steering wheel can be pneumatically disengaged by means of a switch (1) on the steering column, or a switch (2) on the instrument panel to the left of the driver.

![Figure 23: Steering column lock – coach](image1)

![Figure 24: Steering column lock – city bus](image2)

- **i** To release the steering column lock the ignition must be ON.

- **i** If the driver is trapped behind the steering wheel, it is often sufficient to remove the lower third of the steering wheel.

 The procedure for cutting through the steering wheel is the same as for a passenger car.
5.7 Passenger compartment

After an accident it is likely there will be many different problems in the passenger area to deal with. For instance there are different methods of attachment and construction of passenger seats, numerous adjustment options, and restraint systems in some places.

Due to the fitting of handrails, partition walls and luggage racks, after an accident there will be some obstructions, which will make the rescue work more difficult.

5.7.1 Passenger restraint systems

<table>
<thead>
<tr>
<th>City bus</th>
<th>Interurban bus</th>
<th>Coach</th>
</tr>
</thead>
<tbody>
<tr>
<td>No restraint systems for passenger seats</td>
<td>Restraint system possible, but not mandatory</td>
<td>2-point belts on all seats required by law</td>
</tr>
</tbody>
</table>

Except for journeys where the carriage of standing passengers is allowed, safety belts are required in buses. In most buses 2-point belts are installed.

5.7.2 Adjustment of passenger seats

<table>
<thead>
<tr>
<th>City bus</th>
<th>Interurban bus</th>
<th>Coach</th>
</tr>
</thead>
<tbody>
<tr>
<td>No adjustment of passenger seats possible</td>
<td>Seat and backrest adjustment possible</td>
<td>Seat and backrest adjustment possible</td>
</tr>
<tr>
<td>No armrests</td>
<td>Armrests adjustable</td>
<td>Armrests adjustable</td>
</tr>
</tbody>
</table>

Side adjustment of aisle seat

Pull the lever (1) upwards whilst at the same time sliding the seat in the direction of the aisle or into the initial position.

Armrest

Centre armrests and aisle-side armrests fold upwards.

Armrest on aisle side: To fold down the armrest pull it to the rear (against the direction of travel).
Technical Rescue

Backrest adjustment (aisle-side)
Pull the lever (1) upwards whilst at the same time pressing the backrest to the rear.
Let go of the lever (1) in the desired position.

Backrest adjustment (wall-side)
Pull the lever that is between the seat surface and the vehicle wall to the rear. At the same time press the backrest to the rear.
Let go of the lever (1) in the desired position.

5.7.3 Attachment of passenger seats / removal of passenger seats

As buses generally have a relative small aisle, which restricts the rescue action enormously; it may be necessary to remove passenger seats.

In Mercedes-Benz buses and coaches three different seat attachment systems are used. Here one can roughly differentiate these by the type of service:
- City bus
- Interurban bus
- Coach

There may, however, also be mixed forms, e.g. a city bus may have an attachment system from the interurban bus.
Technical Rescue

City bus
Seat material: fibreglass-reinforced thermoplast, plywood
Attachment material: steel tube
Cantilever seating with attachment by means of sliding pieces in the C-rail and clamp rail.

Interurban bus, coach
Seat and backrest frame material: steel tube
Attachment to C-rails, wall-side and platform-side
5.7.4 Handrails and partition walls

Handrails
Material: coated steel tube.
Attachment in a C-rail at the ceiling and at the seat backrests or floor.

Partitions

City bus:
The partitions consist of single-layer safety glass. The panes are clamped in a steel tube frame with rubber pieces.

Coach:
The partitions are made of plastic. Attachment by means of screws in the wall and floor.

5.7.5 Luggage racks

The luggage racks are made of aluminium extrusions, and the floor of the rack is of plastic or perforated aluminium sheet.

Figure 25: Example for an interurban bus

Risk of injury!

| Luggage items in the luggage racks present an injury risk after an accident. | Secure the luggage so it cannot fall down, or clear the luggage before beginning with the rescue work. |
5.8 Special areas

In particular on coaches there are special areas in which more casualties may be confined, or which can make the rescue work dangerous.

5.8.1 Toilet cabin

On most vehicles the toilet cabin is located in front of the entry to Door 2.

It is rare to find the toilet cabin in the rear of the vehicle.

⚠️ Risk of injury!

Some toilet systems work with chemical agents.
Keep an adsorbent available to soak up any leaking chemicals.
Observe the usual safety precautions when dealing with chemicals.
5.8.2 Galley

Like the toilet, the galley is located in the area of Door 2 or in the rear.

![Figure 26: Galley with coffee machine, hotplate and water heater](image)

Risk of injury!

In the galley there are electric heaters and coolers.

| Beware of short circuits or overheating of equipment. |
| Beware of boiling water. |

5.8.3 Luggage compartment

The luggage compartment flaps at the sides may be secured with different systems

- square locks
- cylinder locks
- central locking

The central locking control is located on the instrument panel at the driver station. It can only be operated when the ignition is switched on.

Operation via the remote control is possible without the ignition being switched on.
Technical Rescue

Should none of the above unlocking devices operate, open the luggage flaps with a hydraulic spreader.

Check the luggage compartments for possible sources of fire. In the event of fire in the luggage compartment, remove all items of luggage to prevent the fire from spreading to the passenger compartment.

Remove the luggage and place it in safe custody at a collection point (task of the police).

Risk of injury!

- Jammed luggage compartment flaps may open during the rescue action.
- Maintain an adequate safe distance.

5.8.4 Driver rest area

The driver rest area may be located behind the entry of Door 1 or Door 2.

Access:
- from the outside via flaps on the right and left
- from the inside via roller shutters in the door entries

The driver area is marked on the outside and at the access inside the vehicle with a pictogram.

Carry out a thorough check of all special areas and open all flaps. On some individual special models the special areas may be in positions different from the standard equipment.
5.8.5 Ski boxes

At the rear of coaches there may be ski boxes attached. These boxes partly cover the rear window and will make access to the vehicle more difficult.

<table>
<thead>
<tr>
<th>Risk of injury!</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The high weight of a loaded box (up to 650 kg) can hamper the rescue action.</td>
<td>Unload the ski box before you lift the bus, and place the contents in safe custody.</td>
</tr>
</tbody>
</table>
6 Characteristics

Every bus model possesses special characteristics that place different demands on the rescue teams.

6.1 Definition of bus

A vehicle intended for the transport of persons having more than 8 passenger seats (without the driver) is designated in German law as a motor bus.

6.2 Classification

Buses may be roughly classified according to their type of service into

- city buses
- interurban buses
- coaches (incl. midibuses)

<table>
<thead>
<tr>
<th>City bus</th>
<th>Interurban bus</th>
<th>Coach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban fixed route services</td>
<td>Inter-city / fixed route services outside the cities</td>
<td>Touring</td>
</tr>
<tr>
<td>Vehicles with standing spaces that transport passengers on routes with numerous stops.</td>
<td>Vehicles for transporting seated passengers. Standing passengers in the aisle.</td>
<td>Vehicles for transporting seated passengers.</td>
</tr>
</tbody>
</table>
6.3 Distinguishing characteristics

<table>
<thead>
<tr>
<th></th>
<th>City bus</th>
<th>Interurban bus</th>
<th>Coach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries (doors)</td>
<td>2 – 4 off</td>
<td>2 – 4 off</td>
<td>2 off</td>
</tr>
<tr>
<td></td>
<td>double wing</td>
<td>single or double wing</td>
<td>single-wing</td>
</tr>
<tr>
<td></td>
<td>width approx. 1.25 m</td>
<td>width approx. 0.70 m – 1.25 m</td>
<td>width approx. 0.70 – 0.90 m</td>
</tr>
<tr>
<td>Step height</td>
<td>low, no steps</td>
<td>with steps</td>
<td>high, with several steps</td>
</tr>
<tr>
<td>Waistline height</td>
<td>low</td>
<td>low to medium high</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>approx. 1.30 m</td>
<td>approx. 1.30 - 1.90 m</td>
<td>approx. 2.20 m</td>
</tr>
<tr>
<td>Luggage compartments</td>
<td>none</td>
<td>partial, in floor assembly</td>
<td>in floor assembly</td>
</tr>
<tr>
<td>Seats</td>
<td>not adjustable</td>
<td>partially adjustable</td>
<td>adjustable</td>
</tr>
<tr>
<td>Backrest</td>
<td>low</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Length</td>
<td>8.00 – 18.00 m</td>
<td>12.00 – 18.00 m</td>
<td>9.50 – 14.00 m</td>
</tr>
<tr>
<td>Width</td>
<td>2.35 – 2.55 m</td>
<td>2.50 – 2.55 m</td>
<td>2.40 – 2.55 m</td>
</tr>
<tr>
<td>Height</td>
<td>approx. 3.20 m</td>
<td>approx. 3.40 m</td>
<td>approx. 3.60 – 4.00 m</td>
</tr>
<tr>
<td>Tank capacity</td>
<td>approx. 210 – 400 l</td>
<td>approx. 300 – 400 l</td>
<td>Up to 1,000 l</td>
</tr>
<tr>
<td>Transport capacity</td>
<td>< 170 persons</td>
<td>< 130 persons</td>
<td>< 60 persons</td>
</tr>
<tr>
<td>Axles</td>
<td>2 – 3</td>
<td>2 – 3</td>
<td>2 – 3</td>
</tr>
<tr>
<td>Type</td>
<td>solo and articulated buses</td>
<td>solo and articulated buses</td>
<td>solo buses</td>
</tr>
<tr>
<td>Weight</td>
<td>up to 28 t</td>
<td>up to 28 t</td>
<td>up to 24 t</td>
</tr>
<tr>
<td>Models</td>
<td>Citaro</td>
<td>Citaro</td>
<td>Tourino</td>
</tr>
<tr>
<td></td>
<td>Conecto</td>
<td>Conecto</td>
<td>Travego</td>
</tr>
<tr>
<td></td>
<td>Cito</td>
<td>Integro</td>
<td>Tourismo</td>
</tr>
</tbody>
</table>
This section gives an overview of the various models.

This rescue guide is primarily concerned with vehicles subject to the Euro 3 standard. At present these are the vehicles in most widespread use.

The model number can be read from the type plate (see section 6.4.2 Vehicle identification number).

The annex is primarily intended to assist you in training and preparation for rescue operations that may occur. This overview will help you to gain a better appreciation of the bus types in service in your operations area. At least you will then be well prepared for any rescue operations with these buses.

6.4 Model plate

The model plate gives the data for the exact identification of a bus.

The model plate (1) is located in the front entry on the right.

Figure 27: Model plate – example of Citaro
Characteristics

1. **Vehicle model**
2. **Headlamp home setting**
3. **Flue gas coefficient**
4. **Vehicle manufacturer**
5. **Vehicle Identification Number (VIN)**
6. **Max permissible gross vehicle weight**
7. **Max permissible combination weight**
8. **Permissible axle load, front axle**
9. **Permissible axle load, second axle**
10. **Permissible axle load, third axle**

Important for identification are items 1 (vehicle model) and 5 (Vehicle Identification Number).

The Vehicle Identification Number (VIN) is also affixed behind the front flap.

6.4.1 Vehicle model

<table>
<thead>
<tr>
<th>O 345</th>
<th>Conecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>O 350</td>
<td>Tourismo</td>
</tr>
<tr>
<td>O 510</td>
<td>Tourino</td>
</tr>
<tr>
<td>O 520</td>
<td>Cito</td>
</tr>
<tr>
<td>O 530</td>
<td>Citaro</td>
</tr>
<tr>
<td>O 550</td>
<td>Integro</td>
</tr>
<tr>
<td>O 580</td>
<td>Travego</td>
</tr>
</tbody>
</table>
Characteristics

6.4.2 Vehicle Identification Number (VIN)

\[
\begin{array}{c|c|c|c|c}
\text{WEB} & 6 & 2 & 9 & 01113520027 \\
\hline
\text{a)} & \text{Manufacturer} & \text{b)} & \text{Model} & \text{c)} & \text{Variant} & \text{d)} & \text{Vehicle Identification End Number}
\end{array}
\]

a) Manufacturer
- WDB Daimler-Benz
- WEB EvoBus
- NMB Mercedes-Benz Turkey

b) Model designation
- 444 Tourino
- 613 Tourismo / Intouro
- 627 Integro
- 628 Citaro
- 629 Travego
- 666 Cito
- 671 Conecto

c) Variant
The three digit variant number defines the model more precisely.
- e.g. vehicle length, right/left-hand drive, number of doors

d) Vehicle Identification End Number
The end number enables the precise identification of the vehicle.
Annex A: Vehicles Euro VI

7.1.1 Overview of variants

<table>
<thead>
<tr>
<th>Model</th>
<th>Designation</th>
<th>Type</th>
<th>Length</th>
<th>No. doors</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.023</td>
<td>CITARO CNG City bus</td>
<td>12,1 m</td>
<td>2</td>
<td>Gas drive</td>
<td></td>
</tr>
<tr>
<td>628.024</td>
<td>CITARO CNG City bus</td>
<td>12,1 m</td>
<td>3</td>
<td>Gas drive</td>
<td></td>
</tr>
<tr>
<td>628.033</td>
<td>CITARO City bus</td>
<td>12,1 m</td>
<td>2</td>
<td>horizontal engine</td>
<td></td>
</tr>
<tr>
<td>628.035</td>
<td>CITARO City bus</td>
<td>12,1 m</td>
<td>2</td>
<td>horizontal engine</td>
<td></td>
</tr>
<tr>
<td>628.034</td>
<td>CITARO City bus</td>
<td>12,1 m</td>
<td>3</td>
<td>horizontal engine</td>
<td></td>
</tr>
<tr>
<td>628.036</td>
<td>CITARO City bus</td>
<td>12,1 m</td>
<td>3</td>
<td>horizontal engine</td>
<td></td>
</tr>
<tr>
<td>628.054</td>
<td>CITARO City bus</td>
<td>12,1 m</td>
<td>3</td>
<td>vertical engine</td>
<td></td>
</tr>
<tr>
<td>628.056</td>
<td>CITARO City bus</td>
<td>12,1 m</td>
<td>3</td>
<td>vertical engine</td>
<td></td>
</tr>
<tr>
<td>628.223</td>
<td>CITARO G CNG City bus</td>
<td>18,1 m</td>
<td>3</td>
<td>Articulated bus, Gas drive</td>
<td></td>
</tr>
<tr>
<td>628.224</td>
<td>CITARO G City bus</td>
<td>18,1 m</td>
<td>4</td>
<td>Articulated bus, Gas drive</td>
<td></td>
</tr>
<tr>
<td>628.233</td>
<td>CITARO G City bus</td>
<td>18,1 m</td>
<td>3</td>
<td>Articulated bus, horizontal engine</td>
<td></td>
</tr>
<tr>
<td>628.236</td>
<td>CITARO G City bus</td>
<td>18,1 m</td>
<td>4</td>
<td>Articulated bus, horizontal engine</td>
<td></td>
</tr>
<tr>
<td>628.254</td>
<td>CITARO G City bus</td>
<td>18,1 m</td>
<td>4</td>
<td>Articulated bus, vertical engine</td>
<td></td>
</tr>
<tr>
<td>628.255</td>
<td>CITARO G City bus</td>
<td>18,1 m</td>
<td>3</td>
<td>Articulated bus, vertical engine</td>
<td></td>
</tr>
<tr>
<td>628.256</td>
<td>CITARO G City bus</td>
<td>18,1 m</td>
<td>4</td>
<td>Articulated bus, vertical engine</td>
<td></td>
</tr>
<tr>
<td>628.403</td>
<td>CITARO K City bus</td>
<td>10,6 m</td>
<td>2</td>
<td>horizontal engine</td>
<td></td>
</tr>
<tr>
<td>628.405</td>
<td>CITARO K City bus</td>
<td>10,6 m</td>
<td>2</td>
<td>horizontal engine</td>
<td></td>
</tr>
<tr>
<td>628.448</td>
<td>CapaCity plus City bus</td>
<td>21,1 m</td>
<td>4</td>
<td>horizontal engine</td>
<td></td>
</tr>
<tr>
<td>628.454</td>
<td>CITARO K City bus</td>
<td>10,6 m</td>
<td>3</td>
<td>vertical engine</td>
<td></td>
</tr>
<tr>
<td>628.456</td>
<td>CITARO K City bus</td>
<td>10,6 m</td>
<td>3</td>
<td>vertical engine</td>
<td></td>
</tr>
<tr>
<td>628.503</td>
<td>CITARO LE City bus</td>
<td>12,2 m</td>
<td>2</td>
<td>vertical engine</td>
<td></td>
</tr>
<tr>
<td>628.504</td>
<td>CITARO LE City bus</td>
<td>12,2 m</td>
<td>3</td>
<td>vertical engine</td>
<td></td>
</tr>
<tr>
<td>628.505</td>
<td>CITARO LE City bus</td>
<td>12,2 m</td>
<td>2</td>
<td>vertical engine</td>
<td></td>
</tr>
<tr>
<td>628.506</td>
<td>CITARO LE City bus</td>
<td>12,2 m</td>
<td>3</td>
<td>vertical engine</td>
<td></td>
</tr>
<tr>
<td>628.015-23</td>
<td>CITARO RL City bus</td>
<td>12,1 m</td>
<td>1</td>
<td>rhd</td>
<td></td>
</tr>
<tr>
<td>628.016-23</td>
<td>CITARO RL City bus</td>
<td>12,1 m</td>
<td>1</td>
<td>rhd</td>
<td></td>
</tr>
<tr>
<td>628.018-23</td>
<td>CITARO RL City bus</td>
<td>12,1 m</td>
<td>2</td>
<td>rhd</td>
<td></td>
</tr>
<tr>
<td>628.021-23</td>
<td>CITARO RL City bus</td>
<td>12,1 m</td>
<td>2</td>
<td>rhd</td>
<td></td>
</tr>
<tr>
<td>628.314</td>
<td>Conecto City bus</td>
<td>12,0 m</td>
<td>3</td>
<td>vertical engine</td>
<td></td>
</tr>
<tr>
<td>628.324</td>
<td>Conecto G City bus</td>
<td>18,0 m</td>
<td>4</td>
<td>vertical engine</td>
<td></td>
</tr>
<tr>
<td>628.038</td>
<td>CITARO Ü Interurban bus</td>
<td>12,1 m</td>
<td>2</td>
<td>horizontal engine</td>
<td></td>
</tr>
<tr>
<td>628.039</td>
<td>CITARO Ü Interurban bus</td>
<td>12,1 m</td>
<td>2</td>
<td>horizontal engine</td>
<td></td>
</tr>
<tr>
<td>628.238</td>
<td>CITARO GÜ Interurban bus</td>
<td>18,1 m</td>
<td>3</td>
<td>Articulated bus, horizontal engine</td>
<td></td>
</tr>
<tr>
<td>628.258</td>
<td>CITARO GÜ Interurban bus</td>
<td>18,1 m</td>
<td>3</td>
<td>Articulated bus, horizontal engine</td>
<td></td>
</tr>
<tr>
<td>628.513</td>
<td>CITARO LE Ü Interurban bus</td>
<td>12,2 m</td>
<td>2</td>
<td>vertical engine</td>
<td></td>
</tr>
</tbody>
</table>
Annex A: Vehicles Euro VI

7.1.1 Overview of variants

<table>
<thead>
<tr>
<th>Model</th>
<th>Designation</th>
<th>Type</th>
<th>Length</th>
<th>No. doors</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.515</td>
<td>CITARO LE Ü</td>
<td>Interurban bus</td>
<td>12.2 m</td>
<td>2</td>
<td>vertical engine</td>
</tr>
<tr>
<td>628.523</td>
<td>CITARO LE MÜ</td>
<td>Interurban bus</td>
<td>13.2 m</td>
<td>2</td>
<td>vertical engine</td>
</tr>
<tr>
<td>628.524</td>
<td>CITARO LE MÜ</td>
<td>Interurban bus</td>
<td>13.2 m</td>
<td>3</td>
<td>vertical engine</td>
</tr>
<tr>
<td>628.525</td>
<td>CITARO LE MÜ</td>
<td>Interurban bus</td>
<td>13.2 m</td>
<td>2</td>
<td>vertical engine</td>
</tr>
<tr>
<td>628.526</td>
<td>CITARO LE MÜ</td>
<td>Interurban bus</td>
<td>13.2 m</td>
<td>3</td>
<td>vertical engine</td>
</tr>
<tr>
<td>633.620</td>
<td>Integro</td>
<td>Interurban bus</td>
<td>12.1 m</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>633.640</td>
<td>Integro M</td>
<td>Interurban bus</td>
<td>13.0 m</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>633.660</td>
<td>Integro L</td>
<td>Interurban bus</td>
<td>15.0 m</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>633.720</td>
<td>Intouro</td>
<td>Interurban bus</td>
<td>12.1 m</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>633.723</td>
<td>Intouro M</td>
<td>Interurban bus</td>
<td>12.6 m</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>633.743</td>
<td>Intouro L</td>
<td>Interurban bus</td>
<td>13.3 m</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>632.400</td>
<td>Travego</td>
<td>Coach</td>
<td>12.2 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.430</td>
<td>Travego M</td>
<td>Coach</td>
<td>13.0 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.450</td>
<td>Travego L</td>
<td>Coach</td>
<td>14.0 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.410</td>
<td>Tourismo</td>
<td>Coach</td>
<td>12.2 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.420</td>
<td>Tourismo RH</td>
<td>Coach</td>
<td>12.1 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.431</td>
<td>Tourismo M/2</td>
<td>Coach</td>
<td>13.0 m</td>
<td>2</td>
<td>High decker coach, 2 axles</td>
</tr>
<tr>
<td>632.440</td>
<td>Tourismo RH M</td>
<td>Coach</td>
<td>13.0 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.451</td>
<td>Tourismo L</td>
<td>Coach</td>
<td>14.0 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.460</td>
<td>Tourismo K</td>
<td>Coach</td>
<td>10.3 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
</tbody>
</table>
Annex A: Vehicles Euro VI

7.1.2 Characteristics of City buses

General / Technology
- Drives of various types – diesel, gas, fuel cell
- Number of passengers: up to 170 persons
 mostly standees

Exterior view
- several wide entries
- low entry height
- low waist rail height

Doors
- inward swinging doors
- outward swinging doors
- double wing
- pneumatically powered
- width: 1.25 m

Interior equipment / seats
- low backrests
- no seat adjustment
- no passenger restraint systems
- numerous handrails
- "standing area" for wheelchair passengers, pushchairs
Annex A: Vehicles Euro VI

7.2.3 Overview: CITARO City buses

<table>
<thead>
<tr>
<th>Model</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITARO K, 2 doors</td>
<td></td>
</tr>
<tr>
<td>CITARO K, 3 doors</td>
<td></td>
</tr>
<tr>
<td>CITARO, 2 doors</td>
<td></td>
</tr>
<tr>
<td>CITARO, 3 doors</td>
<td></td>
</tr>
<tr>
<td>CITARO, vertical engine</td>
<td></td>
</tr>
<tr>
<td>CITARO LE, 2 doors</td>
<td></td>
</tr>
<tr>
<td>CITARO LE, 3 doors</td>
<td></td>
</tr>
<tr>
<td>CITARO G, 3 doors</td>
<td></td>
</tr>
<tr>
<td>CITARO G, 4 doors</td>
<td></td>
</tr>
</tbody>
</table>
Annex A: Vehicles Euro VI

7.1.3 CITARO K

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.403</td>
<td>10.6 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.405</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex A: Vehicles Euro VI

7.1.3 CITARO K

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.454</td>
<td>10.6 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.456</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

Tank, additional fuel- or oil tank*

AdBlue-Tank

Battery

Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.3 CITARO

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.033</td>
<td>12.1 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex A: Vehicles Euro VI

7.1.3 CITARO

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.034</td>
<td>12.1 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.036</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.3 CITARO stM

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.054</td>
<td>12,1 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.056</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Optional equipment (SA):
- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex A: Vehicles Euro VI

7.1.3 CITARO LE

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.503</td>
<td>12,2 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.505</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- **Tank, additional fuel- or oil tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex A: Vehicles Euro VI

7.1.3 CITARO LE

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.504</td>
<td>12.2 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.506</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex A: Vehicles Euro VI

7.1.3 CITARO G

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.233</td>
<td>18.1 m</td>
<td>3</td>
<td>3</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.235</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.3 CITARO G

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.236</td>
<td>18.1 m</td>
<td>4</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- ** Tank, additional fuel- or oil tank*
- ** AdBlue-Tank
- ** Battery
- ** Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex A: Vehicles Euro VI

7.1.3 CITARO G

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.254</td>
<td>18.1 m</td>
<td>4</td>
<td>3</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.256</td>
<td></td>
<td></td>
<td></td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- Tank, additional fuel- or oil tank
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex A: Vehicles Euro VI

7.1.3 CITARO G

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.255</td>
<td>18,1 m</td>
<td>4</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram](image)

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex A: Vehicles Euro VI

7.1.3 Overview: CITARO rhd

<table>
<thead>
<tr>
<th>Model</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITARO K RL, 1 door</td>
<td></td>
</tr>
<tr>
<td>CITARO K RL, 2 doors</td>
<td></td>
</tr>
<tr>
<td>CITARO RL, 2 doors</td>
<td></td>
</tr>
<tr>
<td>CITARO RL, 3 doors</td>
<td></td>
</tr>
</tbody>
</table>
Annex A: Vehicles Euro VI

7.1.3 CITARO K RL

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.415-23</td>
<td>10,6 m</td>
<td>1</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.416-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex A: Vehicles Euro VI

7.1.3 CITARO K RL

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.418-23</td>
<td>10,6 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.419-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.3 CITARO RL

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.015-23</td>
<td>12.1 m</td>
<td>1</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.016-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optional equipment (SA)

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.3 CITARO RL

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.018-23</td>
<td>12,1 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.019-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex A: Vehicles Euro VI

7.1.3 Overview: CITARO with gas drive

CITARO CNG, 2 doors

CITARO CNG, 3 doors

CITARO GCNG, 3 doors

CITARO GCNG, 4 doors
Annex A: Vehicles Euro VI

7.1.3 CITARO CNG

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.023</td>
<td>12.1 m</td>
<td>2</td>
<td>2</td>
<td>Natural gas</td>
</tr>
</tbody>
</table>

![Bus Diagram]

- Gas tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.3 CITARO CNG

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.024</td>
<td>12,1 m</td>
<td>3</td>
<td>2</td>
<td>Natural gas</td>
</tr>
</tbody>
</table>

![Bus Diagram]

- Gas tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.3 CITARO CNG

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.223</td>
<td>18.1 m</td>
<td>3</td>
<td>3</td>
<td>Natural gas</td>
</tr>
</tbody>
</table>

- Gas tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.3 CITARO CNG

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.224</td>
<td>18,1 m</td>
<td>4</td>
<td>3</td>
<td>Natural gas</td>
</tr>
</tbody>
</table>

- Gas tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.3 Overview: CapaCity plus

CapaCity plus
Annex A: Vehicles Euro VI

7.1.3 Capacity plus

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.448</td>
<td>21.1 m</td>
<td>4</td>
<td>4</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Sonderausstattung (SA)

- Green: Tank, additional fuel- or oil tank*
- Blue: AdBlue-Tank
- Yellow: Battery
- Orange: Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.3 Overview: Conecto

Conecto

Conecto G
Annex A: Vehicles Euro VI

7.1.3 Conecto

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.314</td>
<td>12,0 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

Diagram:

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex A: Vehicles Euro VI

7.1.3 Conecto G

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.324</td>
<td>18.0 m</td>
<td>4</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Tank, additional fuel- or oil tank*
* AdBlue-Tank*
* Battery*
* Battery isolating switch (in the battery compartment)*

* Optional equipment (SA)
Annex A: Vehicles Euro VI

7.1.4 Characteristics of Interurban buses

General / Technology
Drive: Diesel
Number of passengers: up to 130 persons
mostly seated

Exterior view
several entries
entries with steps
low to medium height waist rail

Doors
outward swinging doors
double wing
single wing
pneumatically powered
width: approx. 0.70 m - 1.25 m

Interior equipment / seats
low and high backrests
seat adjustment possible
passenger restraint systems possible
handrails possible
luggage compartments possible
"standing area" for wheelchair passengers, pushchairs
Annex A: Vehicles Euro VI

7.1.5 Overview: CITARO Interurban buses

- **CITARO Ü**
- **CITARO LE Ü**
- **CITARO LE MÜ, 2 doors**
- **CITARO LE MÜ, 3 doors**
- **CITARO GÜ**
Annex A: Vehicles Euro VI

7.1.5 CITARO Ü

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.038</td>
<td>12,1 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.039</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.5 CITARO LE Ü

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.513</td>
<td>12,2 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.515</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex A: Vehicles Euro VI

7.1.5 CITARO LE MÜ

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.523</td>
<td>13.2 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.525</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optional equipment (SA)

- Tank, additional fuel- or oil tank
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
7.1.5 CITARO LE MÜ

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.524</td>
<td>13,2 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.526</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- Tank, additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.5 CITARO GÜ

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.238</td>
<td>18,1</td>
<td>3</td>
<td>3</td>
<td>Diesel</td>
</tr>
<tr>
<td>628.259</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- Tank, additional fuel- or oil tank *
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex A: Vehicles Euro VI

7.1.5 Overview: Integro

Integro

Integro M

Integro L
Annex A: Vehicles Euro VI

7.1.5 Integro

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>633.620</td>
<td>12.1 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Integro Bus Image]

- Tank
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.5 Integro M

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>633.640</td>
<td>13,0 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex A: Vehicles Euro VI

7.1.5 Integro L

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>633.660</td>
<td>15,0 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex A: Vehicles Euro VI

7.1.5 Overview: Intouro

Intouro

Intouro M

Intouro L
Annex A: Vehicles Euro VI

7.1.5 Intouro

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>633.720</td>
<td>12,1 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex A: Vehicles Euro VI

7.1.5 Intouro M

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>633.723</td>
<td>12,6 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex A: Vehicles Euro VI

7.1.5 Intouro L

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>633.743</td>
<td>13.3 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram](image)

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex A: Vehicles Euro VI

7.1.6 Characteristics of coaches

General / Technology
- Drive: diesel
- Number of passengers: up to 60 persons
 seats only

Exterior view
- 2 entries
 entries with several steps, height of floor approx. 1.35 m (above road)
 high waist rail height approx. 2.20 m (above road)

Doors
- outward swinging doors
 single-wing
 pneumatically powered
 width: 0.70 m (clear width)

Interior equipment / seats
- high backrests
- seat adjustment at the side
- backrest adjustment
- passenger restraint system mandatory
- luggage compartments with grab rail
- may be toilet, galley, driver rest area, etc.
7.1.7 Overview: Travego

Travego

Travego M

Travego L
Annex A: Vehicles Euro VI

7.1.7 Travego

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.400</td>
<td>12,2 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Travego diagram](image1)

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex A: Vehicles Euro VI

7.1.7 Travego M

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.430</td>
<td>13.0 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Travego M Diagram]

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex A: Vehicles Euro VI

7.1.7 Travego L

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.450</td>
<td>14.0 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Travego L diagram](image)

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex A: Vehicles Euro VI

7.1.7 Übersicht: Tourismo

Tourismo K

Tourismo

Tourismo M/2

Tourismo M/3

Tourismo L

Tourismo RH

Tourismo RH M
Annex A: Vehicles Euro VI

7.1.7 Tourismo K

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.460</td>
<td>10,3 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram](image)

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex A: Vehicles Euro VI

7.1.7 Tourismo

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.410</td>
<td>12.1 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Image]

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex A: Vehicles Euro VI

7.1.7 Tourismo M/2

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.431</td>
<td>13,0 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram]

- Tank
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.7 Tourismo M/3

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.470</td>
<td>13,0 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram](image)

Legend:
- Tank
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
7.1.7 Tourismo L

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.451</td>
<td>14,0 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus diagram](image1)

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex A: Vehicles Euro VI

7.1.7 Tourismo RH

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.420</td>
<td>12.1 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

Tank
AdBlue-Tank
Battery
Battery isolating switch (in the battery compartment)
Annex A: Vehicles Euro VI

7.1.7 Tourismo RH M

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.440</td>
<td>13.0 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex A1: vehicles with all-electric drive

7.1.8 Overview of variants

<table>
<thead>
<tr>
<th>Model</th>
<th>Designation</th>
<th>Type</th>
<th>Length</th>
<th>No. doors</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.630</td>
<td>eCITARO</td>
<td>City bus</td>
<td>12,0 m</td>
<td>2</td>
<td>all-electric drive</td>
</tr>
<tr>
<td>628.631</td>
<td>eCITARO</td>
<td>City bus</td>
<td>12,0 m</td>
<td>3</td>
<td>all-electric drive</td>
</tr>
<tr>
<td>628.640</td>
<td>eCITARO G</td>
<td>City bus</td>
<td>18,0 m</td>
<td>3</td>
<td>all-electric drive</td>
</tr>
<tr>
<td>628.641</td>
<td>eCITARO G</td>
<td>City bus</td>
<td>18,0 m</td>
<td>4</td>
<td>all-electric drive</td>
</tr>
</tbody>
</table>
Annex A1: vehicles with all-electric drive

7.1.9 Characteristics of City buses

General / Technology
- Drives of various types – diesel, gas, fuel cell
- Number of passengers: up to 170 persons
 - mostly standees

Exterior view
- several wide entries
- low entry height
- low waist rail height

Doors
- inward swinging doors
- outward swinging doors
- double wing
- pneumatically powered
- width: 1.25 m

Interior equipment / seats
- low backrests
- no seat adjustment
- no passenger restraint systems
- numerous handrails
- "standing area" for wheelchair passengers, pushchairs
Annex A1: vehicles with all-electric drive

7.1.10 Overview: eCITARO

- eCITARO, 2 doors
- eCITARO, 3 doors
Annex A1: vehicles with all-electric drive

7.1.10 eCITARO

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.630</td>
<td>12,0 m</td>
<td>2</td>
<td>2</td>
<td>all-electric</td>
</tr>
</tbody>
</table>

Risk of fatal injury!

The high-voltage on-board power supply has a voltage of 750 V at up to 500 A. If not de-energised, the high-voltage system presents a lethal danger to rescue personnel in case of contact.

- Battery
- Battery isolating switch (in the battery compartment)
- High-voltage battery
- Emergency-off switch
Annex A1: vehicles with all-electric drive

7.1.10 eCITARO

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.631</td>
<td>12,0 m</td>
<td>3</td>
<td>2</td>
<td>all-electric</td>
</tr>
</tbody>
</table>

Risk of fatal injury!
The high-voltage on-board power supply has a voltage of 750 V at up to 500 A. If not de-energised, the high-voltage system presents a lethal danger to rescue personnel in case of contact.

Battery

Battery isolating switch (in the battery compartment)

High-voltage battery

Emergency-off switch
Annex A1: vehicles with all-electric drive

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.640</td>
<td>18.0</td>
<td>3</td>
<td>3</td>
<td>all-electric</td>
</tr>
<tr>
<td>628.641</td>
<td>18.0</td>
<td>4</td>
<td>3</td>
<td>all-electric</td>
</tr>
</tbody>
</table>

Market introduction 2020
Annex B: Vehicles Euro IV und V

7.2.1 Overview of variants

<table>
<thead>
<tr>
<th>Model</th>
<th>Designation</th>
<th>Type</th>
<th>Length</th>
<th>No. doors</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.020</td>
<td>CITARO CNG</td>
<td>City bus</td>
<td>12,00 m</td>
<td>3</td>
<td>Gas drive</td>
</tr>
<tr>
<td>628.073</td>
<td>CITARO FuelCell</td>
<td>City bus</td>
<td>12,00 m</td>
<td>3</td>
<td>Fuel cell/hybrid drive</td>
</tr>
<tr>
<td>628.083</td>
<td>CITARO</td>
<td>City bus</td>
<td>12,00 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.085</td>
<td>CITARO</td>
<td>City bus</td>
<td>12,00 m</td>
<td>3</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.090</td>
<td>CITARO</td>
<td>City bus</td>
<td>12,00 m</td>
<td>3</td>
<td>vertical engine</td>
</tr>
<tr>
<td>628.185</td>
<td>CITARO L</td>
<td>City bus</td>
<td>15,00 m</td>
<td>3</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.220</td>
<td>CITARO G CNG</td>
<td>City bus</td>
<td>18,00 m</td>
<td>4</td>
<td>Articulated bus, gas drive</td>
</tr>
<tr>
<td>628.283</td>
<td>CITARO G</td>
<td>City bus</td>
<td>18,00 m</td>
<td>3</td>
<td>Articulated bus</td>
</tr>
<tr>
<td>628.285</td>
<td>CITARO G</td>
<td>City bus</td>
<td>18,00 m</td>
<td>4</td>
<td>Articulated bus</td>
</tr>
<tr>
<td>628.290</td>
<td>CITARO G</td>
<td>City bus</td>
<td>18,00 m</td>
<td>4</td>
<td>Articulated bus</td>
</tr>
<tr>
<td>628.293</td>
<td>CITARO G DEH</td>
<td>City bus</td>
<td>18,00 m</td>
<td>3</td>
<td>Articulated bus, Diesel-Hybrid drive</td>
</tr>
<tr>
<td>628.294</td>
<td>CITARO G DEH</td>
<td>City bus</td>
<td>18,00 m</td>
<td>4</td>
<td>Articulated bus, Diesel-Hybrid drive</td>
</tr>
<tr>
<td>628.483</td>
<td>CITARO K</td>
<td>City bus</td>
<td>10,40 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.486</td>
<td>CapaCity</td>
<td>City bus</td>
<td>19,54 m</td>
<td>4</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.583</td>
<td>CITARO LE</td>
<td>City bus</td>
<td>12,00 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.584</td>
<td>CITARO LE</td>
<td>City bus</td>
<td>12,00 m</td>
<td>3</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.080-23</td>
<td>CITARO RL</td>
<td>City bus</td>
<td>12,00 m</td>
<td>1</td>
<td>rhd</td>
</tr>
<tr>
<td>628.083-23</td>
<td>CITARO RL</td>
<td>City bus</td>
<td>12,00 m</td>
<td>2</td>
<td>rhd</td>
</tr>
<tr>
<td>628.280-23</td>
<td>CITARO G RL</td>
<td>City bus</td>
<td>18,00 m</td>
<td>2</td>
<td>Articulated bus, rhd</td>
</tr>
<tr>
<td>628.283-23</td>
<td>CITARO G RL</td>
<td>City bus</td>
<td>18,00 m</td>
<td>3</td>
<td>Articulated bus, rhd</td>
</tr>
<tr>
<td>628.310</td>
<td>Conecto</td>
<td>City bus</td>
<td>12,00 m</td>
<td>3</td>
<td>vertical engine</td>
</tr>
<tr>
<td>628.320</td>
<td>Conecto G</td>
<td>City bus</td>
<td>18,00 m</td>
<td>4</td>
<td>vertical engine</td>
</tr>
<tr>
<td>628.087</td>
<td>CITARO Ü</td>
<td>Interurban bus</td>
<td>12,00 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.187</td>
<td>CITARO LÜ</td>
<td>Interurban bus</td>
<td>15,00 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.287</td>
<td>CITARO GÜ</td>
<td>Interurban bus</td>
<td>18,00 m</td>
<td>3</td>
<td>Articulated bus</td>
</tr>
<tr>
<td>628.487</td>
<td>CITARO MÜ</td>
<td>Interurban bus</td>
<td>13,00 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.587</td>
<td>CITARO LE Ü</td>
<td>Interurban bus</td>
<td>12,00 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.687</td>
<td>CITARO LE MÜ</td>
<td>Interurban bus</td>
<td>13,00 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>633.051</td>
<td>Intouro</td>
<td>Interurban bus</td>
<td>12,14 m</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>633.052</td>
<td>Intouro M</td>
<td>Interurban bus</td>
<td>12,98 m</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>633.251</td>
<td>Intouro E</td>
<td>Interurban bus</td>
<td>12,14 m</td>
<td>2</td>
<td>Schoolbus</td>
</tr>
<tr>
<td>633.252</td>
<td>Intouro ME</td>
<td>Interurban bus</td>
<td>12,98 m</td>
<td>2</td>
<td>Schoolbus</td>
</tr>
<tr>
<td>633.001</td>
<td>Integro</td>
<td>Interurban bus</td>
<td>12,14 m</td>
<td>2</td>
<td>Raised floor</td>
</tr>
<tr>
<td>633.002</td>
<td>Integro M</td>
<td>Interurban bus</td>
<td>12,98 m</td>
<td>2</td>
<td>Raised floor</td>
</tr>
<tr>
<td>633.004</td>
<td>Integro L</td>
<td>Interurban bus</td>
<td>14,92 m</td>
<td>2</td>
<td>Raised floor</td>
</tr>
</tbody>
</table>
7.2.1 Overview of variants

<table>
<thead>
<tr>
<th>Model</th>
<th>Designation</th>
<th>Type</th>
<th>Length</th>
<th>No. doors</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>444.303</td>
<td>Tourino</td>
<td>Coach</td>
<td>9,35 m</td>
<td>2</td>
<td>Midibus</td>
</tr>
<tr>
<td>632.006</td>
<td>Travego</td>
<td>Coach</td>
<td>12,14 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.005</td>
<td>Travego M</td>
<td>Coach</td>
<td>12,96 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.007</td>
<td>Travego L</td>
<td>Coach</td>
<td>13,99 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.245</td>
<td>Travego</td>
<td>Coach</td>
<td>12,18 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.246</td>
<td>Travego M</td>
<td>Coach</td>
<td>13,00 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.247</td>
<td>Travego L</td>
<td>Coach</td>
<td>14,03 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.036</td>
<td>Tourismo</td>
<td>Coach</td>
<td>12,14 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>632.038</td>
<td>Tourismo M/2</td>
<td>Coach</td>
<td>12,96 m</td>
<td>2</td>
<td>High decker coach, 2 axles</td>
</tr>
<tr>
<td>632.035</td>
<td>Tourismo M</td>
<td>Coach</td>
<td>12,96 m</td>
<td>2</td>
<td>High decker coach, 3 axles</td>
</tr>
<tr>
<td>632.037</td>
<td>Tourismo L</td>
<td>Coach</td>
<td>13,99 m</td>
<td>2</td>
<td>High decker coach</td>
</tr>
<tr>
<td>444.303-23</td>
<td>Tourino RL</td>
<td>Coach</td>
<td>9,35 m</td>
<td>2</td>
<td>Midibus, rhd</td>
</tr>
<tr>
<td>632.036-23</td>
<td>Tourismo RL</td>
<td>Coach</td>
<td>12,14 m</td>
<td>2</td>
<td>High decker coach, rhd</td>
</tr>
</tbody>
</table>
7.1.2 Characteristics of City buses

General / Technology

- Drives of various types – diesel, gas, fuel cell
- Number of passengers: up to 170 persons
- mostly standees

Exterior view

- several wide entries
- low entry height
- low waist rail height

Doors

- inward swinging doors
- outward swinging doors
- double wing
- pneumatically powered
- width: 1.25 m

Interior equipment / seats

- low backrests
- no seat adjustment
- no passenger restraint systems
- numerous handrails
- "standing area" for wheelchair passengers, pushchairs
Annex B: Vehicles Euro IV und V

7.2.3 Overview: CITARO City buses

- CITARO K
- CITARO, 2 doors
- CITARO, 3 doors
- CITARO, vertical engine
- CITARO LE, 2 doors
- CITARO LE, 3 doors
- CITARO L
- CITARO G, 3 doors
- CITARO G, 4 doors
- CITARO G, vertical engine
Annex B: Vehicles Euro IV und V

7.2.3 CITARO K

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.483</td>
<td>10 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

Optional equipment (SA)

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.083</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

Tank (with pipework), additional fuel- or oil tank*
AdBlue-Tank
Battery
Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.085</td>
<td>12 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Tank (with pipework), additional fuel- or oil tank*
* AdBlue-Tank
* Battery
* Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO (vertical engine)

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.090</td>
<td>12 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram](image)

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 Citaro LE

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.583</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO LE

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.584</td>
<td>12 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Image of CITARO LE bus](image)

* Optional equipment (SA)

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO L

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.185</td>
<td>15 m</td>
<td>3</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO G

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.283</td>
<td>18 m</td>
<td>3</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO G

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.285</td>
<td>18 m</td>
<td>4</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

Tank (with pipework), additional fuel- or oil tank*

AdBlue-Tank

Battery

Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO G (vertical engine)

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.290</td>
<td>18 m</td>
<td>4</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
7.2.3 Overview: CITARO rhd

<table>
<thead>
<tr>
<th>Model</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITARO RL, 1 door</td>
<td></td>
</tr>
<tr>
<td>CITARO RL, 2 doors</td>
<td></td>
</tr>
<tr>
<td>CITARO G RL, 2 doors</td>
<td></td>
</tr>
<tr>
<td>CITARO G RL, 3 doors</td>
<td></td>
</tr>
</tbody>
</table>
Annex B: Vehicles Euro IV und V

7.2.3 CITARO RL

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.080-23</td>
<td>12 m</td>
<td>1</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram](image1)

- **Tank (with pipework)**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.3 CITARO RL

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.083-23</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework)
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO G RL

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.280-23</td>
<td>18 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank (with pipework)**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.3 CITARO G RL

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.283-23</td>
<td>18 m</td>
<td>3</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework)
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex B: Vehicles Euro IV und V

7.2.3 Overview: CITARO gas drive

CITARO CNG

CITARO G CNG
Annex B: Vehicles Euro IV und V

7.2.3 CITARO CNG

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.020</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Gas (NG)</td>
</tr>
</tbody>
</table>

- **Tank (with pipework)**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.3 CITARO G CNG

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.220</td>
<td>18 m</td>
<td>3</td>
<td>3</td>
<td>Gas (NG)</td>
</tr>
</tbody>
</table>

- **Tank (with pipework)**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.3 Overview: the new CITARO

The new CITARO, 2 doors

The new CITARO, 3 doors

The new CITARO stM, 3 doors

The new CITARO G, 3 doors

The new CITARO G, 4 doors
Annex B: Vehicles Euro IV und V

7.2.3 CITARO

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.031</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

Optional equipment (SA)

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.032</td>
<td>12 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO (stehender Motor)

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.052</td>
<td>12 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO G

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.231</td>
<td>18 m</td>
<td>3</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO G

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.232</td>
<td>18 m</td>
<td>4</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.1.2 Characteristics of City buses hybrid drive

General / Technology
- Drives: diesel hybrid, fuel cell hybrid
- Number of passengers: up to 150 persons
 - mostly standees

Exterior view
- several wide entries
- low entry height
- low waist rail height

Doors
- inward swinging doors
- outward swinging doors
- double wing
- pneumatically powered
- width: 1.25 m

Interior equipment / seats
- low backrests
- no seat adjustment
- no passenger restraint systems
- numerous handrails
- "standing area" for wheelchair passengers, pushchairs
Annex B: Vehicles Euro IV und V

7.2.3 Overview: City buses hybrid drive

- CITARO G BlueTec-Hybrid, 3 doors
- CITARO G BlueTec-Hybrid, 4 doors
- CITARO FuelCell-Hybrid, 3 doors
Annex B: Vehicles Euro IV und V

7.2.3 CITARO BlueTec-Hybrid

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.293</td>
<td>18 m</td>
<td>3</td>
<td>3</td>
<td>Diesel hybrid</td>
</tr>
</tbody>
</table>

Risk of fatal injury!
The on-board power network has a voltage of up to 750 V at 400 A. If not de-energised, the hybrid system presents a lethal danger to rescue personnel in case of contact.

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO BlueTec-Hybrid

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.294</td>
<td>18 m</td>
<td>4</td>
<td>3</td>
<td>Diesel hybrid</td>
</tr>
</tbody>
</table>

Risk of fatal injury!
The on-board power network has a voltage of up to 750 V at 400 A. If not de-energised, the hybrid system presents a lethal danger to rescue personnel in case of contact.

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 CITARO FuelCell-Hybrid

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.073</td>
<td>12 m</td>
<td>3</td>
<td>2</td>
<td>Fuel cell hybrid</td>
</tr>
</tbody>
</table>

Risk of fatal injury!

The on-board power network has a voltage of up to 750 V at 400 A. If not de-energised, the hybrid system presents a lethal danger to rescue personnel in case of contact.

- Tank (with pipework)
- Battery
- Battery isolating switch (in the battery compartment)
- High-voltage battery/line
- Emergency off switch
- Fuel cell system
Annex B: Vehicles Euro IV und V

7.2.3 Overview: Capacity

Capacity

Capacity Metro Design
Annex B: Vehicles Euro IV und V

7.2.3 Capacity

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.486</td>
<td>20 m</td>
<td>4</td>
<td>4</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Diagram of the vehicle showing the layout of tanks, AdBlue tank, and battery.]

- **Tank (with pipework)**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.3 Overview: Conecto

Conecto

Conecto G
Annex B: Vehicles Euro IV und V

7.2.3 Conecto

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.310</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.3 Conecto G

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.320</td>
<td>18 m</td>
<td>4</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
7.1.4 Characteristics of Interurban buses

General / Technology
Drive: Diesel
Number of passengers: up to 130 persons
mostly seated

Exterior view
several entries
entries with steps
low to medium height waist rail

Doors
outward swinging doors
double wing
single wing
pneumatically powered
width: approx. 0.70 m - 1.25 m

Interior equipment / seats
low and high backrests
seat adjustment possible
passenger restraint systems possible
handrails possible
luggage compartments possible
"standing area" for wheelchair passengers, pushchairs
Annex B: Vehicles Euro IV und V

7.2.5 Overview: CITARO Interurban buses

- CITARO Ü
- CITARO LE Ü
- CITARO MÜ
- CITARO LE MÜ
- CITARO LÜ
- CITARO GÜ
Annex B: Vehicles Euro IV und V

7.2.5 CITARO Ü

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.087</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

Tank (with pipework), additional fuel- or oil tank
AdBlue-Tank
Battery
Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.5 CITARO LE Ü

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.587</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Diagram of CITARO LE Ü bus]

- Tank (with pipework)
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex B: Vehicles Euro IV und V

7.2.5 CITARO MÜ

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.487</td>
<td>13 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework), additional fuel- or oil tank*
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.5 CITARO LE MÜ

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.687</td>
<td>13 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

Tank (with pipework)
AdBlue-Tank
Battery
Battery isolating switch (in the battery compartment)
Annex B: Vehicles Euro IV und V

7.2.5 CITARO LÜ

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.187</td>
<td>15 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank (with pipework), additional fuel- or oil tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**

* Optional equipment (SA)
Annex B: Vehicles Euro IV und V

7.2.5 CITARO GÜ

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.287</td>
<td>18 m</td>
<td>3</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank (with pipework)**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.5 Overview: Integro

Integro

Integro M

Integro L
Annex B: Vehicles Euro IV und V

7.2.5 Integro

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>633.001</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

Tank

AdBlue-Tank

Battery

Battery isolating switch (in the battery compartment)
Annex B: Vehicles Euro IV und V

7.2.5 Integro M

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>633.002</td>
<td>13 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.5 Integro L

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>633.004</td>
<td>15 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus diagram](image)

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.5 Overview: Intouro

Intouro

Intouro M

Intouro E

Intouro ME
Annex B: Vehicles Euro IV und V

7.2.5 Intouro

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>633.051</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.5 Intouro E

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>633.251</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

Tank
AdBlue-Tank
Battery
Battery isolating switch (in the battery compartment)
Annex B: Vehicles Euro IV und V

7.2.5 Intouro M

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>633.052</td>
<td>13 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex B: Vehicles Euro IV und V

7.2.5 Intouro ME

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>633.252</td>
<td>13 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram](image)

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.1.6 Characteristics of coaches

General / Technology

Drive: diesel
Number of passengers: up to 60 persons
seats only

Exterior view

2 entries
entries with several steps, height of floor approx. 1.35 m (above road)
high waist rail height approx. 2.20 m (above road)

Doors

outward swinging doors
single-wing
pneumatically powered
width: 0.70 m (clear width)

Interior equipment / seats

high backrests
seat adjustment at the side
backrest adjustment
passenger restraint system mandatory
luggage compartments with grab rail
may be toilet, galley, driver rest area, etc.
Annex B: Vehicles Euro IV und V

7.2.7 Overview: Tourino

Tourino

Tourino rhd
Annex B: Vehicles Euro IV und V

7.2.7 Tourino

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>444.303</td>
<td>9,35 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex B: Vehicles Euro IV und V

7.2.7 Tourino rhd

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>444.303-23</td>
<td>9,35 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Model](image)

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.7 Overview: Travego

- Travego
- Travego M
- Travego L
7.2.7 Travego

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.006</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.7 Travego

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.245</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Travego Model Diagram]

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.7 Travego M

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.005</td>
<td>13 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.7 Travego M

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.246</td>
<td>13 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

Tank

AdBlue-Tank

Battery

Battery isolating switch (in the battery compartment)
Annex B: Vehicles Euro IV und V

7.2 Übersicht: Travego

7.2.7 Travego L

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.007</td>
<td>14 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Travego L diagram](image)

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.7 Travego L

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.247</td>
<td>14 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex B: Vehicles Euro IV und V

7.2.7 Overview: Tourismo

<table>
<thead>
<tr>
<th>Model</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tourismo</td>
<td></td>
</tr>
<tr>
<td>Tourismo rhd</td>
<td></td>
</tr>
<tr>
<td>Tourismo M</td>
<td></td>
</tr>
<tr>
<td>Tourismo M/2</td>
<td></td>
</tr>
<tr>
<td>Tourismo L</td>
<td></td>
</tr>
<tr>
<td>Tourismo RH</td>
<td></td>
</tr>
<tr>
<td>Tourismo RH M</td>
<td></td>
</tr>
</tbody>
</table>
Annex B: Vehicles Euro IV und V

7.2.7 Tourismo

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.036</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

Tank
AdBlue-Tank
Battery
Battery isolating switch (in the battery compartment)
Annex B: Vehicles Euro IV und V

7.2.7 Tourismo rhd

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.036-23</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.7 Tourismo M

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.035</td>
<td>13 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus diagram]

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.7 Tourismo M/2

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.038</td>
<td>13 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.7 Tourismo L

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.037</td>
<td>14 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram]

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

7.2.7 Tourismo RH

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.025</td>
<td>12 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Tourismo RH Diagram]

- **Tank**
- **AdBlue-Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex B: Vehicles Euro IV und V

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.026</td>
<td>13 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

7.2.7 Tourismo RH M

- Tank
- AdBlue-Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.1 Overview of variants

<table>
<thead>
<tr>
<th>Model</th>
<th>Designation</th>
<th>Type</th>
<th>Length</th>
<th>No. doors</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.010</td>
<td>CITARO CNG</td>
<td>City bus</td>
<td>12,00 m</td>
<td>2 / 3</td>
<td>Gas drive</td>
</tr>
<tr>
<td>628.043</td>
<td>CITARO</td>
<td>City bus</td>
<td>12,00 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.045</td>
<td>CITARO</td>
<td>City bus</td>
<td>12,00 m</td>
<td>3</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.050</td>
<td>CITARO</td>
<td>City bus</td>
<td>12,00 m</td>
<td>3</td>
<td>vertical engine</td>
</tr>
<tr>
<td>628.075</td>
<td>CITARO</td>
<td>City bus</td>
<td>12,00 m</td>
<td>3</td>
<td>Fuel cell drive</td>
</tr>
<tr>
<td>628.143</td>
<td>CITARO L</td>
<td>City bus</td>
<td>15,00 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.145</td>
<td>CITARO L</td>
<td>City bus</td>
<td>15,00 m</td>
<td>3</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.210</td>
<td>CITARO G CNG</td>
<td>City bus</td>
<td>18,00 m</td>
<td>3 / 4</td>
<td>Gas drive</td>
</tr>
<tr>
<td>628.243</td>
<td>CITARO G</td>
<td>City bus</td>
<td>18,00 m</td>
<td>3</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.245</td>
<td>CITARO G</td>
<td>City bus</td>
<td>18,00 m</td>
<td>4</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.250</td>
<td>CITARO G</td>
<td>City bus</td>
<td>18,00 m</td>
<td>4</td>
<td>vertical engine</td>
</tr>
<tr>
<td>671.021</td>
<td>Conecto M</td>
<td>City bus</td>
<td>13,00 m</td>
<td>2</td>
<td>vertical engine</td>
</tr>
<tr>
<td>671.042</td>
<td>Conecto H</td>
<td>City bus</td>
<td>12,00 m</td>
<td>2</td>
<td>vertical engine</td>
</tr>
<tr>
<td>666.030</td>
<td>CITO</td>
<td>City bus</td>
<td>8,10 m</td>
<td>2</td>
<td>Diesel / electric drive</td>
</tr>
<tr>
<td>666.130</td>
<td>CITO</td>
<td>City bus</td>
<td>8,90 m</td>
<td>2</td>
<td>Diesel / electric drive</td>
</tr>
<tr>
<td>666.230</td>
<td>CITO</td>
<td>City bus</td>
<td>9,60 m</td>
<td>2</td>
<td>Diesel / electric drive</td>
</tr>
<tr>
<td>612.400</td>
<td>O 405 N</td>
<td>City bus</td>
<td>12,00 m</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>628.047</td>
<td>CITARO Ü</td>
<td>Interurban bus</td>
<td>12,00 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.048</td>
<td>CITARO Ü</td>
<td>Interurban bus</td>
<td>12,00 m</td>
<td>3</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.147</td>
<td>CITARO LÜ</td>
<td>Interurban bus</td>
<td>15,00 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.148</td>
<td>CITARO LÜ</td>
<td>Interurban bus</td>
<td>15,00 m</td>
<td>3</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.247</td>
<td>CITARO GÜ</td>
<td>Interurban bus</td>
<td>18,00 m</td>
<td>3</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.248</td>
<td>CITARO GÜ</td>
<td>Interurban bus</td>
<td>18,00 m</td>
<td>4</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>628.447</td>
<td>CITARO MÜ</td>
<td>Interurban bus</td>
<td>13,00 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>671.020</td>
<td>Conecto Ü</td>
<td>Interurban bus</td>
<td>12,00 m</td>
<td>2</td>
<td>horizontal engine</td>
</tr>
<tr>
<td>627.001</td>
<td>Integro</td>
<td>Interurban bus</td>
<td>12,00 m</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>627.011</td>
<td>Integro L</td>
<td>Interurban bus</td>
<td>15,00 m</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>627.021</td>
<td>Integro H</td>
<td>Interurban bus</td>
<td>12,00 m</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>627.031</td>
<td>Integro M</td>
<td>Interurban bus</td>
<td>13,00 m</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Annex C: Vehicles Euro III

7.3.1 Baumusterübersicht Euro III

<table>
<thead>
<tr>
<th>Model</th>
<th>Designation</th>
<th>Type</th>
<th>Length</th>
<th>No. doors</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>629.001</td>
<td>Travego RH</td>
<td>Coach</td>
<td>12,00 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>629.001</td>
<td>Travego</td>
<td>Coach</td>
<td>12,00 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>629.012</td>
<td>Travego L</td>
<td>Coach</td>
<td>15,00 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>629.015</td>
<td>Travego M</td>
<td>Coach</td>
<td>13,00 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>444.203</td>
<td>Tourino</td>
<td>Coach</td>
<td>9,35 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613.358</td>
<td>Tourismo RHD</td>
<td>Coach</td>
<td>12,00 m</td>
<td></td>
<td>Midibus</td>
</tr>
<tr>
<td>613.388</td>
<td>Tourismo SHD</td>
<td>Coach</td>
<td>12,00 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>618.215</td>
<td>O 404</td>
<td>Coach</td>
<td>12,00 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annex C: Vehicles Euro III

7.1.2 Characteristics of City buses

General / Technology
- Drives of various types – diesel, gas, fuel cell
- Number of passengers: up to 170 persons
 - mostly standees

Exterior view
- several wide entries
- low entry height
- low waist rail height

Doors
- inward swinging doors
- outward swinging doors
- double wing
- pneumatically powered
- width: 1.25 m

Interior equipment / seats
- low backrests
- no seat adjustment
- no passenger restraint systems
- numerous handrails
- "standing area" for wheelchair passengers, pushchairs
Annex C: Vehicles Euro III

7.3.3 CITARO

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.043</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- Tank (with pipework), additional fuel- or oil tank*
- Battery
- Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.3 CITARO

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.045</td>
<td>12 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Optional equipment (SA)

- Tank (with pipework), additional fuel- or oil tank*
- Battery
- Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.3 CITARO stM

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.050</td>
<td>12 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Tank (with pipework), additional fuel- or oil tank*

* Battery*

* Battery isolating switch (in the battery compartment)*

* Optional equipment (SA)*
Annex C: Vehicles Euro III

7.3.3 CITARO L

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.143</td>
<td>15 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework), additional fuel- or oil tank*
- Battery
- Battery isolating switch (in the battery compartment)

* Optional equipment (SA)
Annex C: Vehicles Euro III

7.3.3 CITARO L

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.145</td>
<td>15 m</td>
<td>3</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank (with pipework), additional fuel- or oil tank** *
- **Battery**
- **Battery isolating switch (in the battery compartment)**

* Optional equipment (SA)
Annex C: Vehicles Euro III

7.3.3 CITARO G

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.243</td>
<td>18 m</td>
<td>3</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

Tank (with pipework)

Battery

Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.3 CITARO G

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.245</td>
<td>18 m</td>
<td>4</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram](image)

Tank (with pipework)

Battery

Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.3 CITARO G stM

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.250</td>
<td>18 m</td>
<td>4</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram]

- **Tank (with pipework)**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex C: Vehicles Euro III

7.3.3 CITARO Fuel cell

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.075</td>
<td>12 m</td>
<td>3</td>
<td>2</td>
<td>Fuel cell</td>
</tr>
</tbody>
</table>

![Bus Diagram](image)

- **Tank (with pipework)**
- **High-voltage battery/line**
- **Fuel cell system**

Risk of fatal injury!

The on-board power network has a voltage of up to 650 V. If not de-energised, the hybrid system presents a lethal danger to rescue personnel in case of contact.
Annex C: Vehicles Euro III

7.3.3 CITARO CNG

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.010</td>
<td>12 m</td>
<td>2 or 3</td>
<td>2</td>
<td>Gas (NG)</td>
</tr>
</tbody>
</table>

- **Tank (with pipework)**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex C: Vehicles Euro III

7.3.3 CITARO G CNG

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.210</td>
<td>18 m</td>
<td>3 or 4</td>
<td>3</td>
<td>Gas (NG)</td>
</tr>
</tbody>
</table>

![Bus diagram](image)

- **Tank (with pipework)**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex C: Vehicles Euro III

7.3.3 CITO

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>666.030</td>
<td>8,10 m</td>
<td>2</td>
<td>2</td>
<td>Diesel / electric</td>
</tr>
</tbody>
</table>

Risk of fatal injury!

The on-board power network has a voltage of up to 650 V. If not de-energised, the drive system presents a lethal danger to rescue personnel in case of contact.

- Tank (with pipework)
- Battery
- Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.3 CITO

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>666.130</td>
<td>8.90 m</td>
<td>2</td>
<td>2</td>
<td>Diesel / electric</td>
</tr>
</tbody>
</table>

Risk of fatal injury!
The on-board power network has a voltage of up to 650 V. If not de-energised, the drive system presents a lethal danger to rescue personnel in case of contact.
Annex C: Vehicles Euro III

7.3.3 CITO

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>666.230</td>
<td>9.60 m</td>
<td>2</td>
<td>2</td>
<td>Diesel / electric</td>
</tr>
</tbody>
</table>

Risk of fatal injury!
The on-board power network has a voltage of up to 650 V. If not de-energised, the drive system presents a lethal danger to rescue personnel in case of contact.

![Tank (with pipework)](image1)

![Battery](image2)

![Battery isolating switch (in the battery compartment)](image3)
Annex C: Vehicles Euro III

7.3.3 O 405 N2

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>612.400</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram]

- **Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex C: Vehicles Euro III

7.1.4 Characteristics of Interurban buses

General / Technology
- Drive: Diesel
- Number of passengers: up to 130 persons
 mostly seated

Exterior view
- several entries
- entries with steps
- low to medium height waist rail

Doors
- outward swinging doors
- double wing
- single wing
- pneumatically powered
- width: approx. 0.70 m - 1.25 m

Interior equipment / seats
- low and high backrests
- seat adjustment possible
- passenger restraint systems possible
- handrails possible
- luggage compartments possible
- "standing area" for wheelchair passengers, pushchairs
Annex C: Vehicles Euro III

7.3.5 CITARO Ü

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.047</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank (with pipework), additional fuel- or oil tank*
- Battery
- Battery isolating switch (in the battery compartment)

* *Optiona equipment (SA)
Annex C: Vehicles Euro III

7.3.5 CITARO Ü

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.048</td>
<td>12 m</td>
<td>3</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Optiona equipment (SA)

- Tank (with pipework), additional fuel- or oil tank*
- Battery
- Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.5 CITARO MÜ

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.447</td>
<td>13 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Optiona equipment (SA)

- Tank (with pipework), additional fuel- or oil tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.5 CITARO LÜ

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.147</td>
<td>15 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Optiona equipment (SA)

- Tank (with pipework), additional fuel- or oil tank*
- Battery
- Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.5 CITARO LÜ

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.148</td>
<td>15 m</td>
<td>3</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Optiona equipment (SA)

- Tank (with pipework), additional fuel- or oil tank*
- Battery
- Battery isolating switch (in the battery compartment)
7.3.5 CITARO GÜ

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.247</td>
<td>18 m</td>
<td>3</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

Optiona equipment (SA)

- Tank (with pipework), additional fuel- or oil tank*
- Battery
- Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.5 CITARO GÜ

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>628.248</td>
<td>18 m</td>
<td>4</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Optiona equipment (SA)

- **Tank (with pipework), additional fuel- or oil tank** *
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex C: Vehicles Euro III

7.3.5 Conecto Ü

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>671.020</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Optiona equipment (SA)

- Tank, additional fuel- or oil tank*
- Battery
- Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.5 Conecto H

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>671.042</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Optiona equipment (SA)

- Tank, additional fuel- or oil tank*
- Battery
- Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.5 Conecto M

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>671.021</td>
<td>13 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

* Optiona equipment (SA)

- Tank, additional fuel- or oil tank*
- Battery
- Battery isolating switch (in the battery compartment)
7.3.5 Integro

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>627.001</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex C: Vehicles Euro III

7.3.5 Integro H

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>627.021</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.5 Integro M

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>627.031</td>
<td>13 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Integro M bus diagram]

- **Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex C: Vehicles Euro III

7.3.5 Integro L

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>627.011</td>
<td>15 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex C: Vehicles Euro III

7.1.6 Characteristics of coaches

General / Technology
- Drive: diesel
- Number of passengers: up to 60 persons
 - seats only

Exterior view
- 2 entries
 - entries with several steps, height of floor approx. 1.35 m (above road)
 - high waist rail height approx. 2.20 m (above road)

Doors
- outward swinging doors
 - single-wing
 - pneumatically powered
 - width: 0.70 m (clear width)

Interior equipment / seats
- high backrests
- seat adjustment at the side
- backrest adjustment
- passenger restraint system mandatory
- luggage compartments with grab rail
- may be toilet, galley, driver rest area, etc.
Annex C: Vehicles Euro III

7.3.7 Travego RH

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>629.001</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram](image)

- **Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex C: Vehicles Euro III

7.3.7 Travego

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>629.011</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Travego diagram]

- **Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex C: Vehicles Euro III

7.3.7 Travego M

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>629.015</td>
<td>13 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- **Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex C: Vehicles Euro III

7.3.7 Travego L

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>629.012</td>
<td>15 m</td>
<td>2</td>
<td>3</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram](image)

- **Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex C: Vehicles Euro III

7.3.7 Tourismo RHD

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>613.358</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Tourismo RHD Diagram]

- **Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**
Annex C: Vehicles Euro III

7.3.7 Tourismo SHD

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>613.388</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.7 Tourino

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>444.203</td>
<td>9,35 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

- Tank
- Battery
- Battery isolating switch (in the battery compartment)
Annex C: Vehicles Euro III

7.3.7 O 404

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Doors</th>
<th>Axles</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>618.215</td>
<td>12 m</td>
<td>2</td>
<td>2</td>
<td>Diesel</td>
</tr>
</tbody>
</table>

![Bus Diagram]

- **Tank**
- **Battery**
- **Battery isolating switch (in the battery compartment)**